Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(151)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

How Insurance industry is leveraging the Artificial Intelligence

aiforinsurance

For more than 100 years Insurance industry has been functioning in very similar fashion but the recent developments in technology and its adoption by the people has made the insurance industry rethink about how it goes about its business.

A study by Mercer identified Technology and Big data as one of the top 6 challenges the industry is facing followed by Industry problems of Growth and Customer Focus issues.

This should not be worrying because the industry can start solving the issues of growth and customer focus using the new technology available now. A specific branch of FinTech has been carved out to cater to insurance. It is called the InsurTech. This class of technology is being specifically focused on Insurance industry use cases.

InsurTech is about leveraging the Artificial Intelligence capabilities that are evolving and working on Big Data available from various sources. One of the biggest use cases involves using Machine Learning algorithms to mine data to get better insights about consumers, their shopping patterns, lifestyle choices from huge data sets that are now available thanks to mobile and web adoption in the world. It can be safely said that innovation starts from looking and analyzing data, and the Insurance Industry is for sure to benefit from doing it.

The individual companies are transforming the way they handle selling insurance to processing and settling claims. Artificial intelligence is being used to completely handle insurance claims, making the whole process faster, in a recent announcement Lemonade Insurance demonstrated doing this in mere 3 seconds.

AI can not only help in claims processing, however, can also help in setting prices, modeling the risks associated with insurance, customer acquisition, distribution, and operations. It can solve problems across the whole value chain of the insurance industry. It does not take much to start as well. One recommended approach by Mantra Labs is to start with Digital Transformation and in the process start implementing the AI related improvements in the systems and processes.

Mobile Apps, Chatbots, improved Web interfaces are some key elements to improving the customer focus issues highlighted earlier and these can be assisted by AI to provide customised experience to individuals.

In Summary, we can say that AI is already transforming the insurance industry and it’s here to stay.

Cancel

Knowledge thats worth delivered in your inbox

What’s Next in Cloud Optimization? Can We Optimize Costs Without Sacrificing Performance?

Not too long ago, storing data meant dedicating an entire room to massive CPUs. Then came the era of personal computers, followed by external hard drives and USB sticks. Now, storage has become practically invisible, floating somewhere between data centers and, well, the clouds—probably the ones in the sky. Cloud computing continues to evolve, As cloud computing evolves, optimizing costs without sacrificing performance has become a real concern.  How can organizations truly future-proof their cloud strategy while reducing costs? Let’s explore new-age cloud optimization strategies in 2025 designed for maximum performance and cost efficiency.

Smarter Cloud Strategies: Cutting Costs While Boosting Performance

1. AI-Driven Cost Prediction and Auto-Optimization

When AI is doing everything else, why not let it take charge of cloud cost optimization too? Predictive analytics powered by AI can analyze usage trends and automatically scale resources before traffic spikes, preventing unnecessary over-provisioning. Cloud optimization tools like AWS Compute Optimizer and Google’s Active Assist are early versions of this trend.

  • How it Works: AI tools analyze real-time workload data and predict future cloud resource needs, automating provisioning and scaling decisions to minimize waste while maintaining performance.
  • Use case: Netflix optimizes cloud costs by using AI-driven auto-scaling to dynamically allocate resources based on streaming demand, reducing unnecessary expenditure while ensuring a smooth user experience.

2. Serverless and Function-as-a-Service (FaaS) Evolution

That seamless experience where everything just works the moment you need it—serverless computing is making cloud management feel exactly like that. Serverless computing eliminates idle resources, cutting down costs while boosting cloud performance. You only pay for the execution time of functions, making it a cost-effective cloud optimization technique.

  • How it works: Serverless computing platforms like AWS Lambda, Google Cloud Functions, and Azure Functions execute event-driven workloads, ensuring efficient cloud resource utilization while eliminating the need for constant infrastructure management.
  • Use case: Coca-Cola leveraged AWS Lambda for its vending machines, reducing backend infrastructure costs and improving operational efficiency by scaling automatically with demand. 

3. Decentralized Cloud Computing: Edge Computing for Cost Reduction

Why send all your data to the cloud when it can be processed right where it’s generated? Edge computing reduces data transfer costs and latency by handling workloads closer to the source. By distributing computing power across multiple edge nodes, companies can avoid expensive, centralized cloud processing and minimize data egress fees.

  • How it works: Companies deploy micro data centers and AI-powered edge devices to analyze data closer to the source, reducing dependency on cloud bandwidth and lowering operational costs.
  • Use case: Retail giant Walmart leverages edge computing to process in-store data locally, reducing latency in inventory management and enhancing customer experience while cutting cloud expenses.

4. Cloud Optimization with FinOps Culture

FinOps (Cloud Financial Operations) is a cloud cost management practice that enables organizations to optimize cloud costs while maintaining operational efficiency. By fostering collaboration between finance, operations, and engineering teams, FinOps ensures cloud investments align with business goals, improving ROI and reducing unnecessary expenses.

  • How it works: Companies implement FinOps platforms like Apptio Cloudability and CloudHealth to gain real-time insights, automate cost optimization, and enforce financial accountability across cloud operations.
  • Use case: Early adopters of FinOps were Adobe, which leveraged it to analyze cloud spending patterns and dynamically allocate resources, leading to significant cost savings while maintaining application performance. 

5. Storage Tiering with Intelligent Data Lifecycle Management

Not all data needs a VIP seat in high-performance storage. Intelligent data lifecycle management ensures frequently accessed data stays hot, while infrequently used data moves to cost-effective storage. Cloud-adjacent storage, where data is stored closer to compute resources but outside the primary cloud, is gaining traction as a cost-efficient alternative. By reducing egress fees and optimizing storage tiers, businesses can significantly cut expenses while maintaining performance.

  • How it’s being done: Companies use intelligent storage optimization tools like AWS S3 Intelligent-Tiering, Google Cloud Storage’s Autoclass, and cloud-adjacent storage solutions from providers like Equinix and Wasabi to reduce storage and data transfer costs.
  • Use case: Dropbox optimizes cloud storage costs by using multi-tiered storage systems, moving less-accessed files to cost-efficient storage while keeping frequently accessed data on high-speed servers. 

6. Quantum Cloud Computing: The Future-Proof Cost Gamechanger

Quantum computing sounds like sci-fi, but cloud providers like AWS Braket and Google Quantum AI are already offering early-stage access. While still evolving, quantum cloud computing has the potential to process vast datasets at lightning speed, dramatically cutting costs for complex computations. By solving problems that traditional computers take days or weeks to process, quantum computing reduces the need for excessive computing resources, slashing operational costs.

  • How it works: Cloud providers integrate quantum computing services with existing cloud infrastructure, allowing businesses to test and run quantum algorithms for complex problem-solving without massive upfront investments.
  • Use case: Daimler AG leverages quantum computing to optimize battery materials research, reducing R&D costs and accelerating EV development.

7. Sustainable Cloud Optimization: Green Computing Meets Cost Efficiency

Running workloads when renewable energy is at its peak isn’t just good for the planet—it’s good for your budget too. Sustainable cloud computing aligns operations with renewable energy cycles, reducing reliance on non-renewable sources and lowering overall operational costs.

  • How it works: Companies use carbon-aware cloud scheduling tools like Microsoft’s Emissions Impact Dashboard to track energy consumption and optimize workload placement based on sustainability goals.
  • Use case: Google Cloud shifts workloads to data centers powered by renewable energy during peak production hours, reducing carbon footprint and lowering energy expenses. 

The Next Frontier: Where Cloud Optimization is Headed

Cloud optimization in 2025 isn’t just about playing by the old rules. It’s about reimagining the game entirely. With AI-driven automation, serverless computing, edge computing, FinOps, quantum advancements, and sustainable cloud practices, businesses can achieve cost savings and high cloud performance like never before.

Organizations that embrace these innovations will not only optimize their cloud spend but also gain a competitive edge through improved efficiency, agility, and sustainability. The future of cloud computing in 2025 isn’t just about cost-cutting—it’s about making smarter, more strategic cloud investments.

At Mantra Labs, we specialize in AI-driven cloud solutions, helping businesses optimize cloud costs, improve performance, and stay ahead in an ever-evolving digital landscape. Let’s build a smarter, more cost-efficient cloud strategy together. Get in touch with us today!

Are you ready to make your cloud strategy smarter, cost-efficient, and future-ready with AI-driven, serverless, and sustainable innovations?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot