Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(151)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Will AI Be the Future’s Definition of Sustainable Manufacturing?

Governments worldwide are implementing strict energy and emission policies to drive sustainability and efficiency in industries:

  • China’s Dual Control Policy (since 2016) enforces strict limits on energy intensity and usage to regulate industrial consumption.
  • The EU’s Fit for 55 Package mandates industries to adopt circular economy practices and cut emissions by at least 55% by 2030.
  • Japan’s Green Growth Strategy incentivizes manufacturers to implement energy-efficient technologies through targeted tax benefits.
  • India’s Perform, Achieve, and Trade (PAT) Scheme encourages energy-intensive industries to improve efficiency, rewarding those who exceed targets with tradable energy-saving certificates.

These policies reflect a global push toward sustainability, urging industries to innovate, reduce carbon footprints, and embrace energy efficiency.

What’s driving the world to impose these mandates in manufacturing?

This is because the manufacturing industry is at a crossroads. With environmental concerns mounting, the sector faces some stark realities. Annually, it generates 9.2 billion tonnes of industrial waste—enough to fill 3.7 million Olympic-sized swimming pools or cover the entire city of Manhattan in a 340-foot layer of waste. Manufacturing also consumes 54% of the world’s energy resources, roughly equal to the total energy usage of India, Japan, and Germany combined. And with the sector contributing around 25% of global greenhouse gas emissions, it outpaces emissions from all passenger vehicles worldwide.

These regulations are ambitious and necessary. But here’s the question: Can industries meet these demands without sacrificing profitability?

Yes, sustainability initiatives are not a recent phenomenon. They have traditionally been driven by the emergence of smart technologies like the Internet of Things (IoT), which laid the groundwork for more efficient and responsible manufacturing practices.

Today, most enterprises are turning to AI in manufacturing to further drive efficiencies, lower costs while staying compliant with regulations. Here’s how AI-driven manufacturing is enhancing energy efficiency, waste reduction, and sustainable supply chain practices across the manufacturing landscape.

How Does AI Help in Building a Sustainable Future for Manufacturing?

1. Energy Efficiency

Energy consumption is a major contributor to manufacturing emissions. AI-powered systems help optimize energy usage by analyzing production data, monitoring equipment performance, and identifying inefficiencies.

  • Siemens has implemented AI in its manufacturing facilities to optimize energy usage in real-time. By analyzing historical data and predicting energy demand, Siemens reduced energy consumption by 10% across its plants. 
  • In China, manufacturers are leveraging AI-driven energy management platforms to comply with the Dual Control Policy. These systems forecast energy consumption patterns and recommend adjustments to stay within mandated limits.

Impact: AI-driven energy management systems not only reduce costs but also ensure compliance with stringent energy caps, proving that sustainability and profitability can go hand in hand.

2. Waste Reduction

Manufacturing waste is a double-edged sword—it pollutes the environment and represents inefficiencies in production. AI helps manufacturers minimize waste by enhancing production accuracy and enabling circular practices like recycling and reuse.

  • Procter & Gamble (P&G) uses AI-powered vision systems to detect defects in manufacturing lines, reducing waste caused by faulty products. This not only ensures higher quality but also significantly reduces raw material usage.
  • The European Union‘s circular economy mandates have inspired manufacturers in the steel and cement industries to adopt AI-driven waste recovery systems. For example, AI algorithms are used to identify recyclable materials from production waste streams, enabling closed-loop systems. 

Impact: AI helps companies cut down on waste while complying with mandates like the EU’s Fit for 55 package, making sustainability an operational advantage.

3. Sustainable Supply Chains

Supply chains in manufacturing are vast and complex, often contributing significantly to carbon footprints. AI-powered analytics enable manufacturers to monitor and optimize supply chain operations, from sourcing raw materials to final delivery.

  • Unilever uses AI to track and reduce the carbon emissions of its suppliers. By analyzing data across the supply chain, the company ensures that partners comply with sustainability standards, reducing overall emissions.
  • In Japan, automotive manufacturers are leveraging AI for supply chain optimization. AI algorithms optimize delivery routes and load capacities, cutting fuel usage and emissions while benefiting from tax incentives under Japan’s Green Growth Strategy.

Impact: By making supply chains more efficient, AI not only reduces emissions but also builds resilience, helping manufacturers adapt to global disruptions while staying sustainable.

4. Predictive Maintenance

Industrial machinery is a significant source of emissions and waste when it operates inefficiently or breaks down. AI-driven predictive maintenance ensures that equipment is operating at peak performance, reducing energy consumption and downtime.

  • General Electric (GE) uses AI-powered sensors to monitor the health of manufacturing equipment. These systems predict failures before they happen, allowing timely maintenance and reducing energy waste.
  • AI-enabled predictive tools are also being adopted under India’s PAT scheme, where energy-intensive industries leverage real-time equipment monitoring to enhance efficiency. (Source)

Impact: Predictive maintenance not only extends the lifespan of machinery but also ensures that energy-intensive equipment operates within sustainable parameters.

The Road Ahead

AI is no longer just a tool—it’s a critical partner in achieving sustainability. By addressing challenges in energy usage, waste management, and supply chain optimization, AI helps manufacturers not just comply with global mandates but thrive in a world increasingly focused on sustainability.

As countries continue to tighten regulations and push for decarbonization, manufacturers that embrace AI stand to gain a competitive edge while contributing to a cleaner, greener future.

Mantra Labs helps manufacturers achieve sustainable outcomes—driving efficiencies across the shop floor to operational excellence, lowering costs, and enabling them to hit ESG targets. By integrating AI-driven solutions, manufacturers can turn sustainability challenges into opportunities for innovation and growth, building a more resilient and responsible industry for the future.

Cancel

Knowledge thats worth delivered in your inbox

What’s Next in Cloud Optimization? Can We Optimize Costs Without Sacrificing Performance?

Not too long ago, storing data meant dedicating an entire room to massive CPUs. Then came the era of personal computers, followed by external hard drives and USB sticks. Now, storage has become practically invisible, floating somewhere between data centers and, well, the clouds—probably the ones in the sky. Cloud computing continues to evolve, As cloud computing evolves, optimizing costs without sacrificing performance has become a real concern.  How can organizations truly future-proof their cloud strategy while reducing costs? Let’s explore new-age cloud optimization strategies in 2025 designed for maximum performance and cost efficiency.

Smarter Cloud Strategies: Cutting Costs While Boosting Performance

1. AI-Driven Cost Prediction and Auto-Optimization

When AI is doing everything else, why not let it take charge of cloud cost optimization too? Predictive analytics powered by AI can analyze usage trends and automatically scale resources before traffic spikes, preventing unnecessary over-provisioning. Cloud optimization tools like AWS Compute Optimizer and Google’s Active Assist are early versions of this trend.

  • How it Works: AI tools analyze real-time workload data and predict future cloud resource needs, automating provisioning and scaling decisions to minimize waste while maintaining performance.
  • Use case: Netflix optimizes cloud costs by using AI-driven auto-scaling to dynamically allocate resources based on streaming demand, reducing unnecessary expenditure while ensuring a smooth user experience.

2. Serverless and Function-as-a-Service (FaaS) Evolution

That seamless experience where everything just works the moment you need it—serverless computing is making cloud management feel exactly like that. Serverless computing eliminates idle resources, cutting down costs while boosting cloud performance. You only pay for the execution time of functions, making it a cost-effective cloud optimization technique.

  • How it works: Serverless computing platforms like AWS Lambda, Google Cloud Functions, and Azure Functions execute event-driven workloads, ensuring efficient cloud resource utilization while eliminating the need for constant infrastructure management.
  • Use case: Coca-Cola leveraged AWS Lambda for its vending machines, reducing backend infrastructure costs and improving operational efficiency by scaling automatically with demand. 

3. Decentralized Cloud Computing: Edge Computing for Cost Reduction

Why send all your data to the cloud when it can be processed right where it’s generated? Edge computing reduces data transfer costs and latency by handling workloads closer to the source. By distributing computing power across multiple edge nodes, companies can avoid expensive, centralized cloud processing and minimize data egress fees.

  • How it works: Companies deploy micro data centers and AI-powered edge devices to analyze data closer to the source, reducing dependency on cloud bandwidth and lowering operational costs.
  • Use case: Retail giant Walmart leverages edge computing to process in-store data locally, reducing latency in inventory management and enhancing customer experience while cutting cloud expenses.

4. Cloud Optimization with FinOps Culture

FinOps (Cloud Financial Operations) is a cloud cost management practice that enables organizations to optimize cloud costs while maintaining operational efficiency. By fostering collaboration between finance, operations, and engineering teams, FinOps ensures cloud investments align with business goals, improving ROI and reducing unnecessary expenses.

  • How it works: Companies implement FinOps platforms like Apptio Cloudability and CloudHealth to gain real-time insights, automate cost optimization, and enforce financial accountability across cloud operations.
  • Use case: Early adopters of FinOps were Adobe, which leveraged it to analyze cloud spending patterns and dynamically allocate resources, leading to significant cost savings while maintaining application performance. 

5. Storage Tiering with Intelligent Data Lifecycle Management

Not all data needs a VIP seat in high-performance storage. Intelligent data lifecycle management ensures frequently accessed data stays hot, while infrequently used data moves to cost-effective storage. Cloud-adjacent storage, where data is stored closer to compute resources but outside the primary cloud, is gaining traction as a cost-efficient alternative. By reducing egress fees and optimizing storage tiers, businesses can significantly cut expenses while maintaining performance.

  • How it’s being done: Companies use intelligent storage optimization tools like AWS S3 Intelligent-Tiering, Google Cloud Storage’s Autoclass, and cloud-adjacent storage solutions from providers like Equinix and Wasabi to reduce storage and data transfer costs.
  • Use case: Dropbox optimizes cloud storage costs by using multi-tiered storage systems, moving less-accessed files to cost-efficient storage while keeping frequently accessed data on high-speed servers. 

6. Quantum Cloud Computing: The Future-Proof Cost Gamechanger

Quantum computing sounds like sci-fi, but cloud providers like AWS Braket and Google Quantum AI are already offering early-stage access. While still evolving, quantum cloud computing has the potential to process vast datasets at lightning speed, dramatically cutting costs for complex computations. By solving problems that traditional computers take days or weeks to process, quantum computing reduces the need for excessive computing resources, slashing operational costs.

  • How it works: Cloud providers integrate quantum computing services with existing cloud infrastructure, allowing businesses to test and run quantum algorithms for complex problem-solving without massive upfront investments.
  • Use case: Daimler AG leverages quantum computing to optimize battery materials research, reducing R&D costs and accelerating EV development.

7. Sustainable Cloud Optimization: Green Computing Meets Cost Efficiency

Running workloads when renewable energy is at its peak isn’t just good for the planet—it’s good for your budget too. Sustainable cloud computing aligns operations with renewable energy cycles, reducing reliance on non-renewable sources and lowering overall operational costs.

  • How it works: Companies use carbon-aware cloud scheduling tools like Microsoft’s Emissions Impact Dashboard to track energy consumption and optimize workload placement based on sustainability goals.
  • Use case: Google Cloud shifts workloads to data centers powered by renewable energy during peak production hours, reducing carbon footprint and lowering energy expenses. 

The Next Frontier: Where Cloud Optimization is Headed

Cloud optimization in 2025 isn’t just about playing by the old rules. It’s about reimagining the game entirely. With AI-driven automation, serverless computing, edge computing, FinOps, quantum advancements, and sustainable cloud practices, businesses can achieve cost savings and high cloud performance like never before.

Organizations that embrace these innovations will not only optimize their cloud spend but also gain a competitive edge through improved efficiency, agility, and sustainability. The future of cloud computing in 2025 isn’t just about cost-cutting—it’s about making smarter, more strategic cloud investments.

At Mantra Labs, we specialize in AI-driven cloud solutions, helping businesses optimize cloud costs, improve performance, and stay ahead in an ever-evolving digital landscape. Let’s build a smarter, more cost-efficient cloud strategy together. Get in touch with us today!

Are you ready to make your cloud strategy smarter, cost-efficient, and future-ready with AI-driven, serverless, and sustainable innovations?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot