Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Why Interoperability is Key To Unlocking India’s Digital Healthcare Ecosystem

India’s mammoth hospital landscape accounts for nearly 60% of the overall health ecosystem’s revenues. The COVID-19 Pandemic has escalated digital health-seeking behaviour within the public consciousness and renewed India’s impetus towards healthcare innovation. Traditional modes of healthcare delivery are being phased out, in favour of new and disruptive models. The creation of the National Health Stack (NHS), a digital platform with the aim to create universal health records for all Indian citizens by 2022, will bring both central & state health verticals under a common banner.

Yes, progress is slow, but the addition of new frameworks for Health ID, PHR, telemedicine, and OPD insurance will create macro-level demand beyond local in-patient catchment zones. India’s Healthcare ecosystem is now slowly but surely moving towards a wellness-driven model of care delivery from its historically siloed & episodic intervention approach. This streamlining of healthcare creates a new wealth of opportunities for healthcare enterprises. 

But at the core of this approach lies the biggest challenge yet for Indian healthcare — Interoperability or the lack thereof as of now. The ability of health information systems, applications, and devices to send or receive data is paramount to the success of this new foundational framework.

What does the NDHM blueprint have for us? 

By design, the NDHM envisions the healthcare ecosystem to be a comprehensive set of digital platforms—sets of essential APIs, with a strong foundational architecture framework—that brings together multiple groups of stakeholders enabled by shared interfaces, reusable building blocks, and open standards. 

The Blueprint underlines key principles which include the domain perspective—Universal Health Coverage, Security & Privacy by Design, Education & Empowerment, and Inclusiveness of citizens; and the technology perspective—Building Blocks, Interoperability, a set of Registries as single sources of truth, Open Standards, and Open APIs. 

For ‘Technical interoperability’ considerations, all participating health ecosystem entities will need to adopt the standards defined by the IndEA framework. This will allow the integration of all disparate systems under one roof to securely achieve the exchange of clinical records and patient-data portability across India.

The NDHM Ecosystem will allow healthcare providers to gain better reach to new demand pools in OPD & IPD care. India’s OPD rates are currently only at 4 per day per 1000 population. For the patient, this means more preventive check-ups, lower out-of-pocket expenses, timely access to referrals, follow-up care, and improved health-seeking behavior. 

Centralized ID systems across International Territories 

All of this is being tied to a unique health ID for each citizen (or patient in a healthcare setting). What’s unique about health IDs is that each health ID is linked to ‘care contexts’ which carry information about a person’s health episode and can include health records like out-patient consultation notes, diagnostic reports, discharge summaries, and prescriptions. They are also linked to a health data consent manager to help manage a person’s privacy and consent. 

Centralised ID systems, although they come with great privacy & security-related risks, are essential to expanding coverage and strengthening links to service delivery for underprivileged citizens. India’s Unique Identification (UID) project, commonly known as Aadhaar, has also spurred interest in countries like Russia, Morocco, Algeria, Tunisia, Indonesia, Thailand, Malaysia, Philippines, and Singapore – who are now looking to develop Aadhaar-like identification systems for their territories.

By tying together unique IDs that are carefully secured with our health records, health systems can ‘talk’ with each other through secure data exchanges and facilitate optimization of innovative healthcare delivery models. For instance, a patient with a chronic condition (like diabetes, heart disease, etc.) can choose to send their health data to their practitioner of choice and have medical information, treatment, and advice flow to them, instead of them having to step into a doctor’s office.

Platforms that help add richness to existing Medical Information Systems

Distribution in healthcare will get a new and long-awaited facelift with the influx of health startups and other innovative solutions being allowed to permeate the market. Modern EHRs play a significant role in enhancing these new business models — by pulling information that has been traditionally siloed into new systems built on top of the EHRs, that can draw ‘patient-experience changing’ insights from them. For instance, Epic’s App Orchard and Cerner’s Code, and Allscripts’ Development Program — have opened up their platforms to encourage app development in this space. Data that flows into EHR systems, like Orchard or Allscripts, can then be fed into a clinical decision support system (CDSS) — from where developers can train models and provide inferences. For example, take the case of a patient who has a specific pattern of disease history. With the aid of Machine learning trained models, a CDSS can prompt the clinician with guidance about diagnosis options based on the patient’s previous history.

Let’s look at another example, where traditional vital signs and lab values are used to signal alarms for a patient’s health condition. A patient who has previously been treated for chronic bronchitis may come in because they are experiencing an unknown allergic reaction. In a typical scenario, the clinician has to depend on lab values, extensive tests, and context-less medical history reports — to get to the root of the issue. 

But this can be replaced by continuously monitoring AI tools that detect early patterns in health deterioration. In this example case, it could have helped the clinician identify immediately that the patient’s condition may be caused by exposure to allergy triggers, causing ‘allergic bronchitis’. Curated data from EHRs can be used to train models that help risk-stratify patients and assist decision-makers in classifying preoperative & non-operative patients into multiple risk categories.

Data warehouses contain the valuable oil, that is EHR data, but are also enriched with other types of data – like claims data, imaging data, genetic information-type, patient-generated data such as patient-reported outcomes, and wearable-generated data that includes nutrition, at-home vitals monitoring, physical activity status – collected from smartphones and watches. 

Today, data sharing is far from uncommon. For example, The OneFlorida Clinical Research Consortium uses clinical data from twelve healthcare organizations that provide care for nearly fifteen million Florida residents in 22 hospitals. Another example is the European Medical Information Framework (EMIF) which contains EHR data from 14 countries, blended into a single data model to enable new medical discovery and research.

Unsurprisingly, EHR companies were amongst the first to comply with interoperability rules. To that effect, EHR APIs are used for extracting data elements and other patient information from health records stored within one health IT system. With this data, healthcare organizations can potentially build a broad range of applications from patient-facing health apps, telehealth platforms, patient management solutions for treatment monitoring to existing patient portals. 

What’s Next?

In the next ten years, Cisco predicts that 500 billion sensory devices with 4-5 signals each will be connected to the Internet of Everything. This will create about 250 sensory data points per person on average. This wealth of data is ushering in a new wave of opportunities within healthcare. Deriving new interactions from the patient’s journey can be quite arduous. As the health consumer is being ushered into the ‘age of experiences’, the onus is on digital healthcare enterprises to make them more relevant, emotional, and personalized. 

By preparing for ‘Integration Readiness’, healthcare providers can access new patient demand pools from tier-2 & tier-3 cities, identify insights about the health consumer’s life cycle needs, and leverage new technologies to draw in more value from these interactions than ever before. Consequently, hospitals will be able to drive improved margins from reduced administrative costs and gain higher utilization through increased demand.

Parag Sharma, CEO & Founder, Mantra Labs featured in CXO Outlook. Read More – CXO Outlookhttps://www.cxooutlook.com/why-interoperability-is-key-to-unlocking-indias-digital-healthcare-ecosystem/

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot