Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Wearable Technology: Tracking Health in Real-Time

Imagine a wearable device that can predict health emergencies before they occur or one that can analyze your dietary habits and offer personalized nutrition recommendations. With continued innovation, wearable technology is revolutionizing preventive healthcare and empowering individuals to take control of their health like never before. According to Statista, the global market for wearables is poised to skyrocket to $62.82 billion by 2025, driven by a surging demand for health and fitness tracking devices. Coupled with advancements in AR and VR technology, wearables are on the brink of a revolution, with IDC predicting global shipments of AR and VR headsets to soar to 39.2 million units by 2023.

Wearable technology is becoming a game-changer in healthcare, helping individuals to monitor their health in real-time. From fitness trackers to smartwatches, these devices offer an array of features designed to enhance wellness and provide valuable insights into one’s physical condition. Seamlessly integrating into daily life, wearables are putting the power of health management directly into the hands of consumers like never before.

Utilizing Wearable Technology for Health and Wellness

Wearable technology offers a wide range of applications in promoting health and wellness, with various use cases spanning fitness tracking, disease management, remote patient monitoring, and more. Let’s explore some of the key scenarios where wearable devices play a pivotal role:

Fitness Tracking and Optimization:

  • Marathon runners can monitor their heart rate, mileage, pace, and route using fitness trackers, enabling them to optimize their training regimen for better performance.
  • Individuals on a weight loss journey can track their daily activity and calorie expenditure, allowing them to adjust their diet and exercise routine accordingly for sustainable weight loss. Additionally, sleep tracking features can help users understand the impact of sleep quality on their overall health and fitness goals.

Health Monitoring and Disease Management:

  • Diabetic patients can use wearable glucose monitors to continuously track their blood sugar levels, receive real-time alerts for high or low glucose levels, and manage their condition effectively. This continuous monitoring reduces the need for frequent finger pricks and empowers individuals to make timely adjustments to their insulin dosage or diet.
  • Individuals with chronic conditions such as hypertension or respiratory disorders can monitor key health metrics like blood pressure or oxygen saturation, enabling early detection of abnormalities and proactive intervention. For example, wearable devices equipped with SpO2 sensors can detect episodes of low oxygen levels, alerting users to potential respiratory issues or sleep apnea.

Telemedicine and Remote Patient Monitoring:

  • Wearable devices equipped with fall detection sensors provide peace of mind for seniors and their caregivers, automatically alerting designated contacts or emergency services in the event of a fall. This feature is particularly valuable for elderly individuals living alone or those with mobility issues, ensuring prompt assistance in case of emergencies. 
  • Healthcare providers can remotely monitor patients’ health status and track their progress using wearable devices, facilitating virtual consultations and reducing the need for frequent clinic visits, particularly in the context of the COVID-19 pandemic. Remote patient monitoring enables early intervention and personalized care delivery, improving patient outcomes and reducing healthcare costs.

How Wearable Technologies Can Revolutionize Risk Management

The integration of wearable technology into healthcare has significant implications for the insurance industry. By leveraging the wealth of data generated by wearable devices, insurers can gain valuable insights into individuals’ health and lifestyle habits, enabling them to offer more personalized insurance plans and pricing models. Wearable technology serves as a powerful tool for risk assessment and underwriting, allowing insurers to better understand an individual’s health status and risk profile. This enables them to tailor insurance policies to meet the specific needs of each customer, offering incentives for healthy behaviors and proactive health management.

  • Some insurance companies like John Hancock Vitality offer discounts or rewards to policyholders who use wearable devices to track physical activity levels, sleep patterns, and other health metrics.
  • Insurers can partner with healthcare providers to offer remote monitoring programs for individuals with chronic conditions, providing them with wearable devices equipped with health monitoring sensors.
  • Wearable technology facilitates early intervention and preventive care, ultimately reducing healthcare costs for insurers.

Challenges Ahead

While wearable technology offers significant benefits in healthcare, it also raises important considerations that need to be addressed:

Data Privacy and Security: As wearable devices collect sensitive health data, it’s crucial to ensure robust data privacy and security measures are in place to protect users’ information from unauthorized access or breaches. Encryption, secure authentication mechanisms, and adherence to regulatory standards such as GDPR and HIPAA are essential to safeguarding user privacy and maintaining trust in wearable technology.

Accuracy and Reliability: The accuracy and reliability of data collected by wearable devices are paramount, as inaccurate or unreliable information could lead to incorrect health assessments or decisions. Manufacturers must ensure that their devices undergo rigorous testing and validation to maintain high standards of accuracy. Calibration of sensors, regular software updates, and adherence to industry standards for data accuracy are essential to ensure reliable performance and user satisfaction.

Regulatory Compliance: Wearable technology in healthcare is subject to regulatory requirements and standards to ensure safety, efficacy, and data protection. Manufacturers and healthcare providers must comply with relevant regulations and guidelines to mitigate risks and ensure the quality of care. Obtaining regulatory approvals, conducting clinical trials, and adhering to standards such as FDA regulations for medical devices are critical steps in bringing wearable healthcare products to market and ensuring their safe and effective use.

The Future 

The future of wearable technology holds immense promise, with ongoing advancements in sensor technology, data analytics, and artificial intelligence. From fitness tracking to disease management and telemedicine, these devices have the potential to improve health outcomes, enhance patient engagement, and revolutionize the delivery of healthcare services.

Moreover, by embracing wearable technology, insurers can harness the power of data to offer more personalized insurance plans and pricing models, ultimately improving the health and well-being of their customers. Together, through the integration of smart, wearable devices, we can build a healthier, more resilient future for all.

Further Reading: How Smart Technology in the USA is Improving Efficiency in Healthcare

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot