Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(6)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(39)

Insurtech(67)

Product Innovation(59)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Transforming Insurance with Generative AI: A New Era of Efficiency and Personalization

Generative AI, or generative adversarial networks (GANs), has emerged as a powerful tool in the insurance sector. With its ability to create realistic and synthetic data, generative AI has revolutionized how insurers assess risks, detect fraud, and enhance customer experience.

According to a report by Enterprise Apps Today, the generative AI in the insurance market size is expected to be worth around USD 5543.1 million by 2032. The market sentiment establishes an incline towards adopting the technology into industry practices.

However, while the insurance industry is eager to explore the benefits of generative AI tools, a survey commissioned by InRule Technology reveals that customers may need more time to embrace this technology as part of their insurance experience. The survey found that nearly 59% of respondents distrust or fully distrust generative AI, and 70% still prefer interacting with a human. Insurance companies must carefully consider customer attitudes and readiness when implementing AI technologies.

Let us take a deeper look at how the technology impacts the Insurance industry and how insurers can leverage it. 

Applying Generative AI to Insurance

Automation

Generative AI can automate processes by enabling bots to generate contracts and documents.

1. Claims Processing: Generative AI can automate claims processing by analyzing and extracting relevant information from documents such as insurance policies, medical records, and invoices. It can quickly identify the validity of a claim, determine the coverage, and streamline the entire claims process. 

2. Underwriting: From analyzing vast amounts of data to assisting insurance underwriters in assessing risks and making informed decisions, generative AI can reduce manual efforts and errors for underwriters. It can automate the evaluation of the applicant’s information, including their medical history, financial status, and other relevant factors, to determine the appropriate insurance coverage and premium.

Accenture has developed an AI platform that can transform claims and underwriting processes by leveraging the massive volumes of data that insurers collect from various sources. 

3. Fraud Detection: Generative AI can help insurance companies detect fraudulent claims by analyzing patterns, identifying anomalies, and flagging suspicious activities. It can automate the process of detecting potential fraud, saving time and resources for the insurance company.

4. Customer Support: Generative AI chatbots can be implemented in insurance companies to provide automated customer support. These chatbots can answer frequently asked questions, assist in policy inquiries, and provide personalized recommendations. They can also be programmed to handle simple claim requests, reducing the workload on customer service representatives.

Prominent Insurtech firm Lemonade uses generative AI to power its chatbot, Maya, which can handle the entire insurance process from sign-up to claims. Maya can collect customer information, generate personalized quotes, process payments, and handle claims in minutes. Lemonade claims that its generative AI can reduce fraud and bureaucracy, lower costs, and increase transparency.

Further, Indian Ed-tech platform Sunbird is building its chatbot capabilities using Gen-AI, which helps the bot instantly translate text-to-text, text-to-speech, and speech-to-speech in vernacular languages

By leveraging generative AI for automation, insurance companies can streamline operations, reduce manual work, improve efficiency, and provide a better customer experience.

Predictive Analytics

Generative AI can help insurers predict customer behavior and identify potential risks. 

1. Risk Assessment: Analyzing historical data on insurance claims, policyholders, and external factors such as weather patterns and economic indicators to identify patterns and predict future risks. For example, based on past data and trends, it can help insurance companies assess the likelihood of specific claims, such as car accidents or property damage.

2. Pricing Models: Generative AI can analyze data on insurance policies, customer demographics, and other relevant factors to create more accurate pricing models. USA-based management consulting firm Oliver Wyman has developed a Gen-AI platform to help create new products, enhance customer service, provide pricing, and optimize risk management.

3. Fraud Prevention: Generative AI can analyze large volumes of data to detect patterns and anomalies that may indicate fraudulent activity. It can help insurance companies identify potential fraudsters and take preventive measures. For example, it can flag suspicious claims that exhibit unusual patterns or inconsistencies, such as multiple claims for similar incidents or claims with conflicting information.

Improved Customer Experience

Generative AI in insurance can improve customer experience in several ways.

1. Personalized Customer Service: Generative AI can analyze customer data, including interactions with digital platforms and social media, to gain insights into customer behavior and preferences and personalize customer service interactions. For example, if a customer frequently interacts with the insurance company’s mobile app, generative AI can suggest relevant products or services based on their past behavior.

2. Proactive Risk Management: Generative AI can help insurance companies identify potential risks for individual policyholders and take proactive measures to mitigate them. For example, suppose a policyholder lives in an area prone to natural disasters. In that case, generative AI can automatically send personalized safety tips or recommend additional coverage options to protect their property. This proactive approach not only enhances customer experience but also helps prevent losses.

3. Personalized Policy Recommendations: Generative AI can analyze customer data and insurance policies to provide personalized recommendations. For example, if a policyholder’s circumstances change, such as buying a new car or moving to a different location, generative AI can suggest adjustments to their coverage based on their specific needs and risk profile. 

Persado is a company that provides a generative AI platform for marketing. Persado’s platform can optimize messages to motivate consumers to engage and act for better messaging results. It can help insurers to personalize their marketing campaigns, increase conversions, and improve customer loyalty.

By leveraging generative AI in these ways, insurance companies in the USA can provide more personalized and efficient customer experiences, ultimately enhancing customer satisfaction and loyalty.

Conclusion

In conclusion, using generative AI in the insurance industry has proven to be a game-changer. With its ability to automate processes, identify potential risks, and create more accurate pricing models, insurers can reduce costs and increase efficiency. Moreover, the technology can also improve customer experience by providing personalized customer service. As such, it is clear that generative AI is a valuable tool that insurers should embrace to stay ahead of the curve and meet the evolving needs of their customers.

Further Reading:

The Role of Generative AI in Insurance

Cancel

Knowledge thats worth delivered in your inbox

Empowering Frontline Healthcare Sales Teams with Mobile-First Tools

In healthcare, field sales is more than just hitting quotas—it’s about navigating a complex stakeholder ecosystem that spans hospitals, clinics, diagnostics labs, and pharmacies. Reps are expected to juggle compliance, education, and relationship-building—all on the move.

But, traditional systems can’t keep up. 

Only 28% of a rep’s time is spent selling; the rest is lost to administrative tasks, CRM updates, and fragmented workflows.

Salesforce, State of Sales 2024

This is where mobile-first sales apps in healthcare are changing the game—empowering sales teams to work smarter, faster, and more compliantly.

The Real Challenges in Traditional Field Sales

Despite their scale, many healthcare sales teams still rely on outdated tools that drag down performance:

  • Paper-based reporting: Slows down data consolidation and misses real-time insights
  • Siloed CRMs: Fragmented systems lead to broken workflows

According to a study by HubSpot, 32% of reps spend at least an hour per day just entering data into CRMs.

  • Managing Visits: Visits require planning, which may involve a lot of stress since doctors have a busy schedule, making it difficult for sales reps to meet them.
  • Inconsistent feedback loops: Managers struggle to coach and support reps effectively
  • Compliance gaps: Manual processes are audit-heavy and unreliable

These issues don’t just affect productivity—they erode trust, delay decisions, and increase revenue leakage.

What a Mobile-First Sales App in Healthcare Should Deliver

According to Deloitte’s 2025 Global Healthcare Executive Outlook, organizations are prioritizing digital tools to reduce burnout, drive efficiency, and enable real-time collaboration. A mobile-first sales app in healthcare is a critical part of this shift—especially for hybrid field teams dealing with fragmented systems and growing compliance demands.

Core Features of a Mobile-First Sales App in Healthcare

1. Smart Visit Planning & Route Optimization

Field reps can plan high-impact visits, reduce travel time, and log interactions efficiently. Geo-tagged entries ensure field activity transparency.

2. In-App KYC & E-Detailing

According to Viseven, over 60% of HCPs prefer on-demand digital content over live rep interactions, and self-detailing can increase engagement up to 3x compared to traditional methods.
By enabling self-detailing within the mobile app, reps can deliver compliance-approved content, enable interactive, personalized detailing during or after HCP visits, and give HCPs control over when and how they engage.

3. Real-Time Escalation & Commission Tracking

Track escalation tickets and incentive eligibility on the go, reducing back-and-forth and improving rep satisfaction.

4. Centralized Knowledge Hub

Push product updates, training videos, and compliance checklists—directly to reps’ devices. Maintain alignment across distributed teams. 

5. Live Dashboards for Performance Tracking

Sales leaders can view territory-wise performance, rep productivity, and engagement trends instantly, enabling proactive decision-making.

Case in Point: Digitizing Sales for a Leading Pharma Firm

Mantra Labs partnered with a top Indian pharma firm to streamline pharmacy workflows inside their ecosystem. 

The Challenge:

  • Pharmacists were struggling with operational inefficiencies that directly impacted patient care and satisfaction. 
  • Delays in prescription fulfillment were becoming increasingly common due to a lack of real-time inventory visibility and manual processing bottlenecks. 
  • Critical stock-out alerts were either missed or delayed, leading to unavailability of essential medicines when needed. 
  • Additionally, communication gaps between pharmacists and prescribing doctors led to frequent clarifications, rework, and slow turnaround times—affecting both speed and accuracy in dispensing medication. 

These challenges not only disrupted the pharmacy workflow but also created a ripple effect across the wider care delivery ecosystem.

Our Solution:

We designed a custom digital pharmacy module with:

  • Inventory Management: Centralized tracking of sales, purchases, returns, and expiry alerts
  • Revenue Snapshot: Real-time tracking of dues, payments, and cash flow
  • ShortBook Dashboard: Stock views by medicine, distributor, and manufacturer
  • Smart Reporting: Instant downloadable reports for accounts, stock, and sales

Business Impact:

  • 2x faster prescription fulfillment, reducing wait times and improving patient experience
  • 27% reduction in stock-out incidents through real-time alerts and inventory visibility
  • 81% reduction in manual errors, thanks to automation and real-time dashboards
  • Streamlined doctor-pharmacy coordination, leading to fewer clarifications and faster dispensing

Integration Is Key

A mobile-first sales app in healthcare is as strong as the ecosystem it fits into. Mantra Labs ensures seamless integration with:

  • CRM systems for lead and pipeline tracking
  • HRMS for leave, attendance, and performance sync
  • LMS to deliver ongoing training
  • Product Catalogs to support detailing and onboarding

Ready to Empower Your Sales Teams?

From lead capture to conversion, Mantra Labs helps you automate, streamline, and accelerate every step of the sales journey. 

Whether you’re managing field agents, handling complex product configurations, or tracking customer interactions — we bring the tech & domain expertise to cut manual effort and boost productivity.

Let’s simplify your sales workflows. Book a quick call.

Further Reading: How Smarter Sales Apps Are Reinventing the Frontlines of Insurance Distribution

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot