Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

The Role of Generative AI in Healthcare

Artificial intelligence (AI) is transforming the healthcare industry in various ways, from improving diagnosis and treatment to enhancing patient experience and reducing costs. One of the most promising and innovative branches of AI is generative AI. 

Generative AI uses deep learning models, such as generative adversarial networks (GANs) or large language models (LLMs), to learn from extensive data and produce realistic and diverse outputs.

According to a report by Market.us, the global Gen-AI in healthcare market size was valued at USD 1.2 billion in 2022 and is expected to reach USD 8.9 billion by 2032, growing at a CAGR of 22.7% during the forecast period. 

Given the broad focus, this emerging technology has enormous potential to revolutionize healthcare in unprecedented ways, but it also poses some challenges and risks that need to be addressed.

What are the applications of generative AI in healthcare?

Generative AI has many potential applications in healthcare, such as:

• Data augmentation: Firms can create synthetic data that can augment the existing data and improve the performance and accuracy of other AI models. For example, creating synthetic medical images that can help train diagnostic or predictive models with more data and diversity. 

American healthcare company, CloudMedX is a computing platform that improves patient outcomes using predictive analytics. It uses AI to collect data and build holistic pictures of individuals and communities. Its single, unified data platform has operational, clinical, and financial functions, meaning healthcare providers can find everything they need in one place. 

The company’s predictive healthcare models can predict disease progression and determine the likelihoods that patients may have complications by processing medical data and providing risk assessment scores. 

• Data privacy: Using generative AI, healthcare companies can create anonymized data to protect patients’ and providers’ privacy and security. For example, synthetic patient records can be used for research or analysis without revealing actual patients’ identities or sensitive information.

• Data generation: We can create new data or content that can provide insights or solutions for healthcare problems. For example, USA-based startup Persado uses generative AI to create personalized and persuasive content for healthcare communication and engagement. Their digital solutions, Persad PerScribed and Persado Motivation AI Platform have helped healthcare companies, insurers, and retail clinics conduct effective campaigns. 

• Data enhancement: Generative AI can enhance the existing data or content by adding more details or quality. For example, the tech can help respond to patient queries better. Google DeepMind has developed MedPaLM, a large language model (LLM) trained on medical datasets that can respond to healthcare queries. 

Nuance Communications, a technology provider of advanced conversational AI for ambient clinical documentation and decision support through voice biometrics; and specialized ambient sensing hardware, leverages Open AI’s Chat GPT to enhance customer responses and manage administrative tasks. 

Data synthesis: Generative AI can synthesize different data or content types to create a comprehensive and coherent output. AI-based firm Zebra Medical Vision has developed more than 11 algorithms to help medical professionals detect diseases better. Their HealthMammo tool is trained on over 350,000 mammogram reports and detects cancer with a 92% success rate compared to 87% among radiologists.

What are the challenges and risks of generative AI in healthcare?

Generative AI is still an evolving technology that faces some challenges and risks, such as:

• Quality and reliability: Generative AI may produce inaccurate or unrealistic outputs that may mislead or harm users. For example, it may generate false medical information that may affect diagnosis or treatment decisions or generate fake medical images that may violate ethical standards.

• Regulation and governance: There may be a lack of clear rules or guidelines for its development and use in healthcare. For example, there may be questions about accountability, transparency, explainability, fairness, and safety in healthcare settings.

• Ethics and trust: Given the lack of human touch, generative AI may pose ethical and social issues that may affect the trust and acceptance of users. The digital products using it creates may generate harmful or offensive content that affects public health in a worst-case scenario.

Conclusion

Generative AI is a rapidly evolving ecosystem of tools that holds enormous promise for healthcare. It can address some healthcare challenges, such as pandemics, chronic diseases, staff shortages, and administrative burdens. However, the technology also comes with its own challenges and risks that must be carefully considered and managed. Therefore, it is essential to develop trustworthy and responsible generative AI systems that can benefit healthcare without compromising its quality and integrity.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot