Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

The Future of Claims: How AI and Machine Learning are Transforming the US Insurance Experience

When we talk about the one sector that is undergoing a drastic revolution, it is very much the insurance industry, particularly in the area of claims processing. The era of heavy-laden papers and slow and tiresome procedures is over because AI and ML have introduced a paradigm shift in insurance experience and have made it customer-focused and more efficient.

Technology has, though, not brought a solution to the shortcomings of the outdated method of claims processing in the U.S. insurance industry that has led to a delay in claim resolution, additional administrative workload, and increased operational expenses. Given that customers’ expectations for a flawless experience are continually increasing and insurance companies are facing the challenge of having to modernize their claims management processes to offer speedy, precise, and customer-centric solutions.

The Rise of AI and ML in Claims Processing

On the one hand, the insurance claim filing process has been a laborious and time-consuming activity for both insured and insurers as it has been. On the other hand, in the case of insurers implementing AI and ML technologies, they can now streamline and simplify many stages of claim processing, resulting in faster handling times and superior precision.

AI algorithms can quickly examine humongous data sets to identify the risk factors, recognize fraudulent claims, and foretell possible results that have never been seen before. Machine learning models drawn from the historical claims data are able to identify the occurrence of specific patterns alongside deviation from normal behavior thus enhancing the claims management processes and insurer’s decision-making.

  • Real-Time Claims Assessment: AI and ML algorithms make it possible for insurers to assess claims in real-time, thus, speeding up decision-making and payouts to insured.
  • Personalized Customer Support: AI-powered virtual assistants offer tailored assistance to policyholders, responding instantly to claims inquiries and guiding them through the claims process.
  • Fraud Detection and Prevention: ML models largely rely on massive data analytics to pinpoint fraudulent claims, so that insurers can avoid risks and uphold their operations.
  • Continuous Improvement: On the basis of ongoing learning and adaptation, use of AI and ML technologies to better claims processing, leading to higher efficiency and precision over time.

Enhancing Customer Experience

Among the most important advantages AIs and MLs offer in claims processing is the improved customer experience they provide. Insure can be trusted with task execution and reimbursement simplification to allow faster access to needed services. This not only improves customer satisfaction but also builds brand image and trust and reflects long-term retention.

Moreover, AI-based chatbots and virtual assistants as part of claims service plans are becoming a common practice for the provision of personalized support for customers along the way. These virtual agents may resolve queries, provide status updates, and even provide guiding counsel on the subsequent actions—all in real time. With natural language processing (NLP), these chatbots can comprehend, and provide answers with an accuracy down to human standards, thus boosting the whole customer experience.

Improving Accuracy and Fraud Detection

AI and machine learning technologies become pivotal for increasing claims assessment precision, and reduction of fraudulent activities inside the insurance industry. Such algorithms analyze numerous data sets such as past claims, customer data, and other external sources including weather and social media, and any suspicious claim can be reported for further investigation.

In addition, machine learning algorithms have the ability to keep on adjusting and adapting to new tactics of fraud thus allowing insurers to be one step ahead of fraudulent actors. Such a strategy does not only reduce the insurers’ financial losses but also tends to keep the insurance system as a stable whole.

Challenges and Considerations

The AI and ML advantages in claims processing are true but there are several challenges that the insurers must address in order for them to fully maximize their potential benefits. Data protection and security concerns have been raised, as insurers have to confirm that customer information is not just allowed but kept from inappropriate use and unauthorized access.

Furthermore, the incorporation of AI and ML technology goes hand in hand with big investments in infrastructure, talent, and training. Insurers need to assess their currently implemented systems and processes to determine the best integration and implementation method, demonstrating scalability, interoperability, and regulatory compliance.

The Road Ahead

With technology always on the move, the future of claims processing in the US insurance sector looks very bright. AI and ML will therefore remain the main drivers for achieving efficiencies and accuracy across the claims lifecycle, resulting in an improved experience for policyholders.

Nonetheless, it will take the partnership and cooperation among insurance companies, regulators, and other parties to reach the full potential of technology. Through the use of adoption and making the most out of AI and ML, the insurance industry can overcome the issues of tomorrow and offer top-notch service to its clients in an ever-growing technological world.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot