Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Modern Medical Enterprises Absolutely Need Test Automation. Here’s Why.

3 minutes, 38 seconds read

The healthcare industry is getting a comprehensive digital facelift. Digital Health Systems (DHS) that use new digital technologies like artificial intelligence & robotics are delivering smarter healthcare services and better health outcomes to the masses. Health organizations are increasingly relying on them to improve care coordination, chronic disease management and the overall patient experience. These health systems are also alleviating repetitive administrative tasks from the roles of healthcare professionals, allowing them more time to practice actual healthcare.

The Modern Medical Enterprise draws on digital-enabled technologies such as telemedicine, AR/VR and remote-monitoring wearables to diagnose diseases and promote self-care. These applications rely on high-volume processing of patient data on a frequent basis.  Healthcare organizations also need to share/receive this information securely over a distributed network. However, sharing patient information remains a challenge, while the inability to access these records in a time-sensitive manner can affect the time-to-treatment for patients.

Deploying digital health systems that are both compliant to regulatory standards and functionally stable for a large number of concurrent users requires significant manned effort. Moreover, QA teams comprised of manual testers may end up working on repetitive manual test case scenarios that can lead to challenges in scaling or rolling out new features. 

How can the modern healthcare enterprise keep pace with issues posed by the safe deployment of their digital health systems? Automated Testing is a hallmark process of any digital transformation project. It gives enterprises the ability to shorten their release cycles and meet their business needs without affecting productivity or operations across the healthcare value chain. Test Automation also allows medical enterprises to run repeatable and extensible test cases against real-world scenarios.

Test Automation Use Case

The growth of DevOps and the rise of mobile-first applications are responsible for driving the growth of the test automation market globally. Today, enterprises are able to go faster-to-market owing to the technological advancements in quality assurance & testing.

For instance, in the case of a large US-based teleradiology firm that offers enterprise Imaging Solutions for improving patient care — a stable and reliable system mandated custom-built test automation frameworks. The medical technology company provides fast & secure access to diagnostic quality images using any web enabled device. To achieve this, they have built a cloud-based image sharing platform that allows digital image streaming, diagnostic & clinical viewing, and archiving for healthcare organizations.

Medical Image sharing among healthcare organizations is altogether brimming with security risks, and requires a complex network of systems to facilitate its smooth functioning. 

medical imaging system architecture
Medical Image Sharing Process among Healthcare Organizations

Also read – How are Medical Images shared among Healthcare Enterprises? 

In order to fulfil their business objectives, Mantra Labs identified key challenges for their testing requirements, namely —

1. Scalability
The platform must be able to support a high number of concurrent users.

2. Fail-over Control

The platform should behave functionally correct under very high loads with stable fail-over capability.


3. Efficiency & Reliability
The platform must scale rapidly when supporting a large user base & multiple formats with minimal page navigation response time.

Several testing components were deployed along with test automation techniques to address the full range of QA issues, including: functional testing, integration testing, GUI testing, and regression testing. 

Mantra Labs created a federated architecture to ensure near-perfect scaling, and true load & data isolation between different tenant organizations. The federated architecture consists of a number of deployments and a central set of components that stores global information like lists of organizations & users, and provides a centralized messaging service. 

test automation process flow diagram for modern medical enterprises
Mantra Labs Test Automation Process

Test Automation Improves Accuracy & Test Coverage

The entire cycle of bug detection in the UI, API and Server Loads involves several weeks of regression manual efforts. By automating tests, techniques like Stochastic Tests can be applied to detect bugs and reduce the overall cycle time.

Through Mantra Labs deep medical domain expertise, in-depth testing practices, intuitive suggestions for platform scaling and successful test automation efforts — significant business objectives were realised over the course for the client. Mantra was able to achieve over 60% reduction in cycle time, and about 65 per cent improvement in bug detection capability before the release cycle.

Nearly 35% of Executive Management objectives revolve around implementing quality checks early in the product life cycle, which can be achieved through test automation. For further queries and details about automated testing, please feel free to reach us at hello@mantralabsglobal.com

Related:

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot