Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(147)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(22)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Top 10 SQL Query Optimization Tips to Improve Database Performance

5 minutes, 18 seconds read

SQL Query optimization is a process of writing thoughtful SQL queries to improve database performance. During development, the amount of data accessed and tested is less. Hence, developers get a quick response to the queries they write. But the problem starts when the project goes live and enormous data starts flooding the database. Such instances slow down SQL queries response drastically and create performance issues.

When working with large-scale data, even the most minor change can have a dramatic impact on performance.

SQL performance tuning can be an incredibly difficult task. Even a minor change can have a dramatic impact on performance. Here are the 10 most effective ways to optimize your SQL queries. 

  1. Indexing: Ensure proper indexing for quick access to the database.
  2. Select query: Specify the columns in SELECT query instead of SELECT* to avoid extra fetching load on the database.
  3. Running queries: Loops in query structure slows the sequence. Thus, avoid them.
  4. Matching records: Use EXITS() for matching if the record exists.
  5. Subqueries: Avoid correlated sub queries as it searches row by row, impacting the speed of SQL query processing.
  6. Wildcards: Use wildcards (e.g. %xx%) wisely as they search the entire database for matching results.
  7. Operators: Avoid using function at RHS of the operator.
  8. Fetching data: Always fetch limited data.
  9. Loading: Use a temporary table to handle bulk data.
  10. Selecting Rows: Use the clause WHERE instead of HAVING for primary filters.

SQL Query Optimization Tips with Examples

Tip 1: Proper Indexing

An index is a data structure that improves the speed of data retrieval operations on a database table. A unique index creates separate data columns without overlapping each other. Proper indexing ensures quicker access to the database, i.e. you’ll be able to select or sort rows faster. The following diagram explains the basics of indexing while structuring tables.

TIP 2: Use SELECT <columns> instead of SELECT *

Specify the columns in the SELECT clause instead of using SELECT *. The unnecessary columns place extra load on the database, which slows down not just the single SQL, but the whole system.

Inefficient

SELECT * FROM employees

This query fetches all the data stored in the “employees” table such as phone number, activity dates, notes from sales, etc. which might not be required for a particular scenario.

Efficient

SELECT first_name, last_name, mobile, city, state FROM employees

This query will fetch only selected columns.

Tip 3: Avoid running queries in a loop

Coding SQL queries in loops slows down the entire sequence. Instead of writing a query that runs in a loop, you can use bulk insert and update depending on the situation. Suppose there are 1000 records. Here, the query will execute 1000 times.

Inefficient

for ($i = 0; $i < 10; $i++) {  
  $query = “INSERT INTO TBL (A,B,C) VALUES . . . .”;  
  $mysqli->query($query);  
  printf (“New Record has id %d.\ “, $mysqli->insert_id);
}

Efficient

INSERT INTO TBL (A,B,C) VALUES (1,2,3), (4,5,6). . . .

Tip 4: Does My record exists?

Normally, developers use EXITS() or COUNT() queries for matching a record entry. However, EXIT() is more efficient as it will exit as soon as finding a matching record; whereas, COUNT() will scan the entire table even if the record is found in the first row.

Inefficient

IF (SELECT COUNT(1) FROM EMPLOYEES WHERE FIRSTNAME LIKE ‘%JOHN%’) > 0 PRINT ‘YES’

Efficient

IF EXISTS(SELECT FIRSTNAME FROM EMPLOYEES WHERE FIRSTNAME LIKE ‘%JOHN%’)
PRINT ‘YES’

Tip 5: A big NO for correlated subqueries

A correlated subquery depends on the parent or outer query. Since it executes row by row, it decreases the overall speed of the process.

Inefficient

SELECT c.Name, c.City,(SELECT CompanyName FROM Company WHERE ID = c.CompanyID) AS CompanyName FROM Customer c

Here, the problem is — the inner query is run for each row returned by the outer query. Going over the “company” table again and again for every row processed by the outer query creates process overhead. Instead, for SQL query optimization, use JOIN to solve such problems.

Efficient

SELECT c.Name, c.City, co.CompanyName FROM Customer c LEFT JOIN Company co   ON c.CompanyID = co.CompanyID

Tip 6: Use wildcard characters wisely

Wildcard characters can be either used as a prefix or a suffix. Using leading wildcard (%) in combination with an ending wildcard will search all records for a match anywhere within the selected field.

Inefficient

Select name from employees where name like ‘%avi%’

This query will pull the expected results of Avishek, Avinash, Avik and so on . However, it will also pull unexpected results, such as David, Xavier, Davin.    

Efficient

Select name from employees where name like ‘avi%’.

This query will pull only the expected results of Avishek, Avinash, Avik and so on. 

Tip 7: Avoid using SQL function on the RHS of the operator

Often developers use functions or methods with their SQL queries. 

Inefficient

Select * from Customer where YEAR(AccountCreatedOn) == 2005 and  MONTH(AccountCreatedOn) = 6

Note that even though AccountCreatedOn has an index, the above query changes the WHERE clause in such a way that this index cannot be used anymore.

Efficient

Select * From Customer Where AccountCreatedOn between ‘6/1/2005’ and ‘6/30/2005’

Tip 8: Always fetch limited data and target accurate results

Lesser the data retrieved, the faster the query will run. Rather than applying too many filters on the client-side, filter the data as much as possible at the server. This limits the data being sent on the wire and you’ll be able to see the results much faster.

Tip 9: Drop index before loading bulk data

If you want to insert thousands of rows in an online system, use a temporary table to load data. Ensure that this temporary table does not have any index. Since moving data from one table to another is much faster than loading them from an external source; you can now drop indexes on your primary table, move data from temporary to the final table, and finally recreate the indexes.

Tip 10: Use WHERE instead of HAVING

HAVING clause filters the rows after all the rows are selected. It is just like a filter. Do not use the HAVING clause for any other purposes. 

In the SQL Order of Operations, HAVING statements are calculated after WHERE statements. Therefore, executing the WHERE query is faster.

Hope you enjoyed reading these tips for SQL query optimization. If you have any questions, feel free to drop a comment or write to us at hello@mantralabsglobal.com.

You can learn more about SQL queries and syntax at W3Schools tutorial.

About Author: Avishek Kumar Singh is a Senior Tech Lead at Mantra Labs —  a leading application development service provider in insurtech and e-commerce domains. He has years of experience in developing robust web and mobile applications for enterprises.

Suggest reading – LAMP/MEAN Stack: Business and Developer Perspective

Common FAQs

What is SQL optimization?

SQL optimization is a process of using SQL queries in the best possible way to get accurate and fast database results. The most common database queries are INSERT, SELECT, UPDATE, DELETE, and CALL. These are coupled with subqueries to filter the results. This is where people need to think of optimization to get accurate results with fewer resources and improve database performance.

What is SQL query tuning?

SQL optimization is also known as SQL query tuning. Basically, it is a process of smartly using SQL queries to increase the speed of fetching data and improve overall database performance.

What are the different query optimization techniques?

There are two most common query optimization techniques – cost-based optimization and rule (logic) based optimization. For large databases, a cost-based query optimization technique is useful as it table join methods to deliver the required output. Rule-based optimization combines two or more queries based on relational expressions. The following example illustrates rule-based query optimization.
rule-based query optimization

Cancel

Knowledge thats worth delivered in your inbox

The Pet Tech Boom You Can’t Ignore: How Smart Devices Are Revolutionizing Pet Care

By :

What’s your first thought when you see a puppy strutting around in a tiny sweater or hear about luxury pet spas? Maybe, “That’s adorable!” or “Why don’t I have that life?” And let’s be honest—some pets have social media accounts with better engagement than most of us. Beyond the cuteness, these trends signal a deeper shift. The global pet care market is booming, with India’s pet Industry alone hitting $3.20 billion. It’s the age of pet tech, Today, pets are family—sharing our homes, routines, and emotional lives. 

It’s not just technology for convenience’s sake, these innovations address real pain points. By solving pet-owner concerns, pet tech transforms pet care into a proactive, data-driven, and deeply connected experience.

Innovations Driving the Pet Tech Revolution

Here’s how technology is reshaping the industry:

  1. AI-Powered Insights
    AI doesn’t just automate, it learns. Devices now recognize pet behavioral patterns of the pets to make personalized recommendations, whether it’s switching a pet’s diet or alerting owners to early signs of illness. 
  2. Wearable Tech
    These aren’t just GPS trackers; they’re fitness and health monitors for pets. From tracking activity levels to monitoring heart rates, wearable technology for pets is becoming an essential tool for modern pet parents. For instance, a dog recovering from surgery can wear a tracker to alert you if they’re too active, preventing injury.
  3. Smart Devices
    Automating routine tasks like feeding, watering, and waste management frees up time while ensuring your pet’s basic needs are met. Think smart pet feeders that portion meals based on your pet’s diet plan or self-cleaning litter boxes that operate automatically after every use.
  4. Telemedicine Platforms
    Virtual vet consultations are game-changers, especially in urban areas where time and traffic are challenges. Imagine spotting unusual behavior in your cat and connecting with a veterinarian online instantly through video for advice.
  5. Interactive Gadgets
    Smart pet toys and cameras aren’t just fun—they address pet anxiety, loneliness, and boredom. Treat-dispensing cameras let you check in on your dog and reward them with a snack while you’re away.

Startups: The Powerhouses of Pet Tech Innovation

Pet tech’s meteoric rise is fueled by ingenious startups redefining what’s possible:

  • Pet Wireless: Tailio, their health monitoring platform, combines non-wearable sensing devices, cloud-based analytics, and a mobile app. It empowers pet owners with insights and helps vets deliver superior care.
  • Dinbeat: This startup specializes in wearable tech for pets, offering devices that remotely monitor vital signs. Alerts via a mobile app ensure timely intervention.
  • Obe: By harnessing real-time consumption data, Obe’s digital wellness platform allows pet owners to make informed health and nutrition decisions. Early diagnosis capabilities are a game-changer.
  • Scollar: Their full-stack platform integrates a modular smart collar, mobile app, and cloud data service. Scollar offers comprehensive solutions for managing pet and livestock health.
  • Mella Pet Care: Known for its AI-assisted, non-rectal thermometer, Mella provides fast and non-invasive temperature readings. Its seamless integration with apps and patient management systems enhances diagnostics.

Globally, the pet tech industry is riding a wave of growth, driven by innovation and shifting consumer behaviors: Market reports predict continued expansion, highlighting the rise in demand for smart pet care solutions and personalized offerings.

Conclusion: A Revolution in the Making

Pet care technology is transforming, blending tradition with technology to create a seamless and smarter experience. As brick-and-mortar pet stores evolve with online conveniences like home delivery and smart pet toys become everyday essentials, the possibilities of pet tech are redefining what it means to care for our furry companions. Advanced analytics now tailor diets, grooming, and preventive care, ensuring our pets get the attention they deserve.

Yet, amidst all the innovation, the essence of pet care remains rooted in love, connection, and trust. While gadgets can simplify tasks, they can never replace the joy of a wagging tail, the warmth of a purr, or the bond that comes from shared moments. As we embrace this technological revolution in pet care, we must also prioritize ethical innovation—where privacy, security, and empathy lead the way.

At Mantra Labs, we are committed to building solutions that empower pet parents without compromising the human-animal bond.

The pet tech revolution isn’t just about innovation—it’s about elevating how we care for our pets, ensuring they live happier, healthier, and more connected lives. Whether you’re a pet parent, an industry leader, or simply curious about the future, one thing is clear: our pets aren’t just part of our lives; they’re part of our hearts. And with technology, we can give them the care they truly deserve.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot