Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Top 10 SQL Query Optimization Tips to Improve Database Performance

5 minutes, 18 seconds read

SQL Query optimization is a process of writing thoughtful SQL queries to improve database performance. During development, the amount of data accessed and tested is less. Hence, developers get a quick response to the queries they write. But the problem starts when the project goes live and enormous data starts flooding the database. Such instances slow down SQL queries response drastically and create performance issues.

When working with large-scale data, even the most minor change can have a dramatic impact on performance.

SQL performance tuning can be an incredibly difficult task. Even a minor change can have a dramatic impact on performance. Here are the 10 most effective ways to optimize your SQL queries. 

  1. Indexing: Ensure proper indexing for quick access to the database.
  2. Select query: Specify the columns in SELECT query instead of SELECT* to avoid extra fetching load on the database.
  3. Running queries: Loops in query structure slows the sequence. Thus, avoid them.
  4. Matching records: Use EXITS() for matching if the record exists.
  5. Subqueries: Avoid correlated sub queries as it searches row by row, impacting the speed of SQL query processing.
  6. Wildcards: Use wildcards (e.g. %xx%) wisely as they search the entire database for matching results.
  7. Operators: Avoid using function at RHS of the operator.
  8. Fetching data: Always fetch limited data.
  9. Loading: Use a temporary table to handle bulk data.
  10. Selecting Rows: Use the clause WHERE instead of HAVING for primary filters.

SQL Query Optimization Tips with Examples

Tip 1: Proper Indexing

An index is a data structure that improves the speed of data retrieval operations on a database table. A unique index creates separate data columns without overlapping each other. Proper indexing ensures quicker access to the database, i.e. you’ll be able to select or sort rows faster. The following diagram explains the basics of indexing while structuring tables.

TIP 2: Use SELECT <columns> instead of SELECT *

Specify the columns in the SELECT clause instead of using SELECT *. The unnecessary columns place extra load on the database, which slows down not just the single SQL, but the whole system.

Inefficient

SELECT * FROM employees

This query fetches all the data stored in the “employees” table such as phone number, activity dates, notes from sales, etc. which might not be required for a particular scenario.

Efficient

SELECT first_name, last_name, mobile, city, state FROM employees

This query will fetch only selected columns.

Tip 3: Avoid running queries in a loop

Coding SQL queries in loops slows down the entire sequence. Instead of writing a query that runs in a loop, you can use bulk insert and update depending on the situation. Suppose there are 1000 records. Here, the query will execute 1000 times.

Inefficient

for ($i = 0; $i < 10; $i++) {  
  $query = “INSERT INTO TBL (A,B,C) VALUES . . . .”;  
  $mysqli->query($query);  
  printf (“New Record has id %d.\ “, $mysqli->insert_id);
}

Efficient

INSERT INTO TBL (A,B,C) VALUES (1,2,3), (4,5,6). . . .

Tip 4: Does My record exists?

Normally, developers use EXITS() or COUNT() queries for matching a record entry. However, EXIT() is more efficient as it will exit as soon as finding a matching record; whereas, COUNT() will scan the entire table even if the record is found in the first row.

Inefficient

IF (SELECT COUNT(1) FROM EMPLOYEES WHERE FIRSTNAME LIKE ‘%JOHN%’) > 0 PRINT ‘YES’

Efficient

IF EXISTS(SELECT FIRSTNAME FROM EMPLOYEES WHERE FIRSTNAME LIKE ‘%JOHN%’)
PRINT ‘YES’

Tip 5: A big NO for correlated subqueries

A correlated subquery depends on the parent or outer query. Since it executes row by row, it decreases the overall speed of the process.

Inefficient

SELECT c.Name, c.City,(SELECT CompanyName FROM Company WHERE ID = c.CompanyID) AS CompanyName FROM Customer c

Here, the problem is — the inner query is run for each row returned by the outer query. Going over the “company” table again and again for every row processed by the outer query creates process overhead. Instead, for SQL query optimization, use JOIN to solve such problems.

Efficient

SELECT c.Name, c.City, co.CompanyName FROM Customer c LEFT JOIN Company co   ON c.CompanyID = co.CompanyID

Tip 6: Use wildcard characters wisely

Wildcard characters can be either used as a prefix or a suffix. Using leading wildcard (%) in combination with an ending wildcard will search all records for a match anywhere within the selected field.

Inefficient

Select name from employees where name like ‘%avi%’

This query will pull the expected results of Avishek, Avinash, Avik and so on . However, it will also pull unexpected results, such as David, Xavier, Davin.    

Efficient

Select name from employees where name like ‘avi%’.

This query will pull only the expected results of Avishek, Avinash, Avik and so on. 

Tip 7: Avoid using SQL function on the RHS of the operator

Often developers use functions or methods with their SQL queries. 

Inefficient

Select * from Customer where YEAR(AccountCreatedOn) == 2005 and  MONTH(AccountCreatedOn) = 6

Note that even though AccountCreatedOn has an index, the above query changes the WHERE clause in such a way that this index cannot be used anymore.

Efficient

Select * From Customer Where AccountCreatedOn between ‘6/1/2005’ and ‘6/30/2005’

Tip 8: Always fetch limited data and target accurate results

Lesser the data retrieved, the faster the query will run. Rather than applying too many filters on the client-side, filter the data as much as possible at the server. This limits the data being sent on the wire and you’ll be able to see the results much faster.

Tip 9: Drop index before loading bulk data

If you want to insert thousands of rows in an online system, use a temporary table to load data. Ensure that this temporary table does not have any index. Since moving data from one table to another is much faster than loading them from an external source; you can now drop indexes on your primary table, move data from temporary to the final table, and finally recreate the indexes.

Tip 10: Use WHERE instead of HAVING

HAVING clause filters the rows after all the rows are selected. It is just like a filter. Do not use the HAVING clause for any other purposes. 

In the SQL Order of Operations, HAVING statements are calculated after WHERE statements. Therefore, executing the WHERE query is faster.

Hope you enjoyed reading these tips for SQL query optimization. If you have any questions, feel free to drop a comment or write to us at hello@mantralabsglobal.com.

You can learn more about SQL queries and syntax at W3Schools tutorial.

About Author: Avishek Kumar Singh is a Senior Tech Lead at Mantra Labs —  a leading application development service provider in insurtech and e-commerce domains. He has years of experience in developing robust web and mobile applications for enterprises.

Suggest reading – LAMP/MEAN Stack: Business and Developer Perspective

Common FAQs

What is SQL optimization?

SQL optimization is a process of using SQL queries in the best possible way to get accurate and fast database results. The most common database queries are INSERT, SELECT, UPDATE, DELETE, and CALL. These are coupled with subqueries to filter the results. This is where people need to think of optimization to get accurate results with fewer resources and improve database performance.

What is SQL query tuning?

SQL optimization is also known as SQL query tuning. Basically, it is a process of smartly using SQL queries to increase the speed of fetching data and improve overall database performance.

What are the different query optimization techniques?

There are two most common query optimization techniques – cost-based optimization and rule (logic) based optimization. For large databases, a cost-based query optimization technique is useful as it table join methods to deliver the required output. Rule-based optimization combines two or more queries based on relational expressions. The following example illustrates rule-based query optimization.
rule-based query optimization

Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot