Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Regression Testing in Agile: A Complete Guide for Enterprises

6 minutes, 18 seconds read

To scale-up the employee and customer satisfaction levels, enterprises frequently roll features to their software and applications. For instance, ING — the Dutch multinational financial services company releases features to its web and mobile sites every three weeks and has reported impressive improvement in its customer satisfaction scores. 

New releases and enhancements are integral to agile businesses. But with these, comes the requirement to ensure a seamless experience for the user while using the application.

Whenever there is a change in code across multiple releases or multiple builds for the enhancement or bug fix and due to these changes there might be an Impact Area. Testing these Impact Areas is known as Regression Testing.

Regression Testing Cases

Regression testing is a combination of all the functional, integration and system test cases. Here, testers pick the test cases from the Test Case Repository. Organizations use regression testing in the following ways-

  • Executing the old test cases for the next release for any new feature addition. 
  • Only after passing new test cases, the system executes the old test cases of the previous release.

Mainly, regression testing requires 3 things-

  1. Addition of new test cases in the test case repository.
  2. Deletion or retiring of the old test cases which have no relation to any module of an application.
  3. Modification of the old test cases with respect to enhancement or changes in the existing features.

Types of Regression Testing

There are 3 main types of regression testing in agile:

1. Unit Regression Testing

This testing method tests the code as a single unit. 

  • It tests the changed unit only.
  • If there’s a minor code change, testing is done on that particular module and all the components which have dependencies between them.
  • Here, testers need not find the impact area.
  • It is possible to modify or re-write existing test cases.

2. Regional Regression Testing

It involves testing the Impacted Areas of the software due to new feature releases or major enhancement to the existing features.

  • It involves testing the changing unit and the Impact Area.
  • Regional regression testing requires rewriting the entire test cases as it corresponds to a major change.
  • It requires deleting the old test case and adding a new test case to the repository. 
  • It may affect other dependent features. Therefore, it requires identifying the Impact Areas and picking up old test cases from the test case repository and test the dependent modules referring to the old test cases.

3. Full Regression Testing

It is a comprehensive testing method that involves testing the changed unit as well as independent old features of the application.

  • Here, the changed unit, as well as the complete application (independent or dependent), is tested.
  • Full regression testing is mostly applicable for LIFE CRITICAL or MACHINE CRITICAL Applications.

Regression testing is also done at the product/application development stage.

4. Release Level Regression Testing

Regression testing at release level corresponds to testing during the second release of an application.

  • It always starts from the second release of an application.
  • Usually, when organizations seek to add new features or enhancing existing features of an application a new release needs to go live, for which, this type of regression testing is done.
  • Release level regression testing refers to testing on the Impact Area and involves finding out the regression test case accordingly.

5. Build Level Regression Testing

Regression testing at build level corresponds to testing during the second build of the upcoming release.

  • It takes place whenever there’s some code changes or bug fixes across the builds.
  • QA first retest the bug fixes and then the impact area.
  • This cycle of build continues until a final stable build.
  • The final stable build is given to the customer or when the product is live.
  • QA is usually aware of the product and utilizes their Product knowledge to identify the impact areas.

The Process of Regression Testing in Agile

The process of Regression Testing in Agile
  • After getting the requirements and understanding it completely, testers perform Impact Analysis to find the Impact Areas.
  • One should perform regression testing when the new features are stable.
  • To avoid major risks it is better to perform Impact Analysis in the beginning.
  • 3 stakeholders can carry out Impact Analysis:
    • Customers based on Customer Knowledge.
    • Developer based on Coding Knowledge.
    • And, most importantly by the QA based on the Product Knowledge.
  • All three stakeholders make their reports and the process continues till achieving the maximum impact area.
  • Then the Team Lead consolidates all the reports and picks test cases from the test case repository to prepare Regression Testing Suite for QA Engineers. Post this, the final execution process starts.

The main challenges of Regression Testing is to Identify the Impact Area.

Challenges of Manual Regression Testing

  • Time-Consuming as the test cases increase release by release.
  • The need for more manual QA Engineers.
  • Repetitive and monotonous tasks; therefore accuracy is always a question.

This is where Test Automation comes into place.

Advantages of Test Automation

  • Time-saving: Test Automation executes test cases in batches making it faster. I.e. it is possible to execute multiple test cases simultaneously.
  • Reusability: It allows reusing the test script in the next release when the impact areas are the same.
  • Cost-effective: There’s no need for additional resources for executing similar test cases again and again.
  • Accurate: Machine-based procedures are not prone to slip errors.

Read more: Everything about Test Automation as a Service (TAAAS)

It may look like Test Automation might replace manual QA Engineers, but that’s not the case. Regression testing in agile still requires QA in the following instances.

Limitations of Test Automation

  • It is not possible to automate testing for new features. Test Automation Engineers still need to write test scripts.
  • Similarly, it’s not possible to automate testing in case of a feature update.
  • There is no technology support such as Captcha.
  • It requires human involvement; such as OTP.
  • At times, certain test cases require more time in test automation. During such instances, one can go for manual testing. For example, 5 Test Cases require 1 hour to execute it manually whereas Test Automation takes a complete 5 hours executing it. 

In agile, enterprises need testing with each sprint. On the other hand, testers need to ensure that new changes do not affect existing functionalities of the product/application. Therefore, agile combines both regression testing and test automation to accelerate the product’s time-to-market.

If you’re looking for Testing Services for your Enterprises, please feel free to drop us a word at hello@mantralabsglobal.com. You can also check out our Testing Services.

Quality is never an accident; it is always the result of intelligent effort.

John Ruskin

About the author: Ankur Vishwakarma is a Software Engineer — QA at Mantra Labs Pvt Ltd. He is integral to the organization’s testing services. Apart from writing test scripts, you can find Ankur hauling on his Enfield!

Regression Testing FAQs

Why do you do regression testing?

Regression testing is done to ensure that any new feature or enhancement in the existing application runs smoothly and any change in code does not impact the functionality of the product.

Is regression testing part of UAT?

UAT corresponds to User Acceptance Testing. It is the last phase of the software testing process. Regression Testing is not a part of UAT as it is done on product/application features and updates.

What is Agile methodology in testing?

Agile implies an iterative development methodology. Agile testing corresponds to a continuous process rather than sequential. In this method, features are tested as they’re developed.

What is the difference between functional and regression testing?

Functional testing ensures that all the functionalities of an application are working fine. It is done before the product release. Regression testing ensures that new features or enhancements are working correctly after the build is released.

Related:

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot