Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Platform Engineering: Accelerating Development and Deployment

The software development landscape is evolving rapidly, demanding unprecedented levels of speed, quality, and efficiency. To keep pace, organizations are turning to platform engineering. This innovative approach empowers development teams by providing a self-service platform that automates and streamlines infrastructure provisioning, deployment pipelines, and security. By bridging the gap between development and operations, platform engineering fosters standardization, and collaboration, accelerates time-to-market, and ensures the delivery of secure and high-quality software products. Let’s dive into how platform engineering can revolutionize your software delivery lifecycle.

The Rise of Platform Engineering

The rise of DevOps marked a significant shift in software development, bringing together development and operations teams for faster and more reliable deployments. As the complexity of applications and infrastructure grew, DevOps teams often found themselves overwhelmed with managing both code and infrastructure.

Platform engineering offers a solution by creating a dedicated team focused on building and maintaining a self-service platform for application development. By standardizing tools and processes, it reduces cognitive overload, improves efficiency, and accelerates time-to-market.  

Platform engineers are the architects of the developer experience. They curate a set of tools and best practices, such as Kubernetes, Jenkins, Terraform, and cloud platforms, to create a self-service environment. This empowers developers to innovate while ensuring adherence to security and compliance standards.

Role of DevOps and Cloud Engineers

Platform engineering reshapes the traditional development landscape. While platform teams focus on building and managing self-service infrastructure, application teams handle the development of software. To bridge this gap and optimize workflows, DevOps engineers become essential on both sides.

Platform and cloud engineering are distinct but complementary disciplines. Cloud engineers are the architects of cloud infrastructure, managing services, migrations, and cost optimization. On the other hand, platform engineers build upon this foundation, crafting internal developer platforms that abstract away cloud complexity.

Key Features of Platform Engineering:

Let’s dissect the core features that make platform engineering a game-changer for software development:

Abstraction and User-Friendly Platforms: 

An internal developer platform (IDP) is a one-stop shop for developers. This platform provides a user-friendly interface that abstracts away the complexities of the underlying infrastructure. Developers can focus on their core strength – building great applications – instead of wrestling with arcane tools. 

But it gets better. Platform engineering empowers teams through self-service capabilities.This not only reduces dependency on other teams but also accelerates workflows and boosts overall developer productivity.

Collaboration and Standardization

Close collaboration with application teams helps identify bottlenecks and smooth integration and fosters a trust-based environment where communication flows freely.

Standardization takes center stage here. Equipping teams with a consistent set of tools for automation, deployment, and secret management ensures consistency and security. 

Identifying the Current State

Before building a platform, it’s crucial to understand the existing technology landscape used by product teams. This involves performing a thorough audit of the tools currently in use, analyzing how teams leverage them, and identifying gaps where new solutions are needed. This ensures the platform we build addresses real-world needs effectively.

Security

Platform engineering prioritizes security by implementing mechanisms for managing secrets such as encrypted storage solutions. The platform adheres to industry best practices, including regular security audits, continuous vulnerability monitoring, and enforcing strict access controls. This relentless vigilance ensures all tools and processes are secure and compliant.

The Platform Engineer’s Toolkit For Building Better Software Delivery Pipelines

Platform engineering is all about streamlining and automating critical processes to empower your development teams. But how exactly does it achieve this? Let’s explore the essential tools that platform engineers rely on:

Building Automation Powerhouses:

Infrastructure as Code (IaC):

CI/CD Pipelines:

Tools like Jenkins and GitLab CI/CD are essential for automating testing and deployment processes, ensuring applications are built, tested, and delivered with speed and reliability.

Maintaining Observability:

Monitoring and Alerting:

Prometheus and Grafana is a powerful duo that provides comprehensive monitoring capabilities. Prometheus scrapes applications for valuable metrics, while Grafana transforms this data into easy-to-understand visualizations for troubleshooting and performance analysis.

All-in-one Monitoring Solutions:

Tools like New Relic and Datadog offer a broader feature set, including application performance monitoring (APM), log management, and real-time analytics. These platforms help teams to identify and resolve issues before they impact users proactively.

Site Reliability Tools To Ensure High Availability and Scalability:

Container Orchestration:

Kubernetes orchestrates and manages container deployments, guaranteeing high availability and seamless scaling for your applications.

Log Management and Analysis:

The ELK Stack (Elasticsearch, Logstash, Kibana) is the go-to tool for log aggregation and analysis. It provides valuable insights into system behavior and performance, allowing teams to maintain consistent and reliable operations.

Managing Infrastructure

Secret Management:

HashiCorp Vault protects secretes, centralizes, and manages sensitive data like passwords and API keys, ensuring security and compliance within your infrastructure.

Cloud Resource Management:

Tools like AWS CloudFormation and Azure Resource Manager streamline cloud deployments. They automate the creation and management of cloud resources, keeping your infrastructure scalable, secure, and easy to manage. These tools collectively ensure that platform engineering can handle automation scripts, monitor applications, maintain site reliability, and manage infrastructure smoothly.

The Future is AI-Powered:

The platform engineering landscape is constantly evolving, and AI is rapidly transforming how we build and manage software delivery pipelines. The tools like Terraform, Kubecost, Jenkins X, and New Relic AI facilitate AI capabilities like:

  • Enhance security
  • Predict infrastructure requirements
  • Optimize resource security 
  • Predictive maintenance
  • Optimize monitoring process and cost

Conclusion

Platform engineering is becoming the cornerstone of modern software development. Gartner estimates that by 2026, 80% of development companies will have internal platform services and teams to improve development efficiency. This surge underscores the critical role platform engineering plays in accelerating software delivery and gaining a competitive edge.

With a strong foundation in platform engineering, organizations can achieve greater agility, scalability, and efficiency in the ever-changing software landscape. Are you ready to embark on your platform engineering journey?

Building a robust platform requires careful planning, collaboration, and a deep understanding of your team’s needs. At Mantra Labs, we can help you accelerate your software delivery. Connect with us to know more. 

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot