Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(152)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Platform Engineering: Accelerating Development and Deployment

The software development landscape is evolving rapidly, demanding unprecedented levels of speed, quality, and efficiency. To keep pace, organizations are turning to platform engineering. This innovative approach empowers development teams by providing a self-service platform that automates and streamlines infrastructure provisioning, deployment pipelines, and security. By bridging the gap between development and operations, platform engineering fosters standardization, and collaboration, accelerates time-to-market, and ensures the delivery of secure and high-quality software products. Let’s dive into how platform engineering can revolutionize your software delivery lifecycle.

The Rise of Platform Engineering

The rise of DevOps marked a significant shift in software development, bringing together development and operations teams for faster and more reliable deployments. As the complexity of applications and infrastructure grew, DevOps teams often found themselves overwhelmed with managing both code and infrastructure.

Platform engineering offers a solution by creating a dedicated team focused on building and maintaining a self-service platform for application development. By standardizing tools and processes, it reduces cognitive overload, improves efficiency, and accelerates time-to-market.  

Platform engineers are the architects of the developer experience. They curate a set of tools and best practices, such as Kubernetes, Jenkins, Terraform, and cloud platforms, to create a self-service environment. This empowers developers to innovate while ensuring adherence to security and compliance standards.

Role of DevOps and Cloud Engineers

Platform engineering reshapes the traditional development landscape. While platform teams focus on building and managing self-service infrastructure, application teams handle the development of software. To bridge this gap and optimize workflows, DevOps engineers become essential on both sides.

Platform and cloud engineering are distinct but complementary disciplines. Cloud engineers are the architects of cloud infrastructure, managing services, migrations, and cost optimization. On the other hand, platform engineers build upon this foundation, crafting internal developer platforms that abstract away cloud complexity.

Key Features of Platform Engineering:

Let’s dissect the core features that make platform engineering a game-changer for software development:

Abstraction and User-Friendly Platforms: 

An internal developer platform (IDP) is a one-stop shop for developers. This platform provides a user-friendly interface that abstracts away the complexities of the underlying infrastructure. Developers can focus on their core strength – building great applications – instead of wrestling with arcane tools. 

But it gets better. Platform engineering empowers teams through self-service capabilities.This not only reduces dependency on other teams but also accelerates workflows and boosts overall developer productivity.

Collaboration and Standardization

Close collaboration with application teams helps identify bottlenecks and smooth integration and fosters a trust-based environment where communication flows freely.

Standardization takes center stage here. Equipping teams with a consistent set of tools for automation, deployment, and secret management ensures consistency and security. 

Identifying the Current State

Before building a platform, it’s crucial to understand the existing technology landscape used by product teams. This involves performing a thorough audit of the tools currently in use, analyzing how teams leverage them, and identifying gaps where new solutions are needed. This ensures the platform we build addresses real-world needs effectively.

Security

Platform engineering prioritizes security by implementing mechanisms for managing secrets such as encrypted storage solutions. The platform adheres to industry best practices, including regular security audits, continuous vulnerability monitoring, and enforcing strict access controls. This relentless vigilance ensures all tools and processes are secure and compliant.

The Platform Engineer’s Toolkit For Building Better Software Delivery Pipelines

Platform engineering is all about streamlining and automating critical processes to empower your development teams. But how exactly does it achieve this? Let’s explore the essential tools that platform engineers rely on:

Building Automation Powerhouses:

Infrastructure as Code (IaC):

CI/CD Pipelines:

Tools like Jenkins and GitLab CI/CD are essential for automating testing and deployment processes, ensuring applications are built, tested, and delivered with speed and reliability.

Maintaining Observability:

Monitoring and Alerting:

Prometheus and Grafana is a powerful duo that provides comprehensive monitoring capabilities. Prometheus scrapes applications for valuable metrics, while Grafana transforms this data into easy-to-understand visualizations for troubleshooting and performance analysis.

All-in-one Monitoring Solutions:

Tools like New Relic and Datadog offer a broader feature set, including application performance monitoring (APM), log management, and real-time analytics. These platforms help teams to identify and resolve issues before they impact users proactively.

Site Reliability Tools To Ensure High Availability and Scalability:

Container Orchestration:

Kubernetes orchestrates and manages container deployments, guaranteeing high availability and seamless scaling for your applications.

Log Management and Analysis:

The ELK Stack (Elasticsearch, Logstash, Kibana) is the go-to tool for log aggregation and analysis. It provides valuable insights into system behavior and performance, allowing teams to maintain consistent and reliable operations.

Managing Infrastructure

Secret Management:

HashiCorp Vault protects secretes, centralizes, and manages sensitive data like passwords and API keys, ensuring security and compliance within your infrastructure.

Cloud Resource Management:

Tools like AWS CloudFormation and Azure Resource Manager streamline cloud deployments. They automate the creation and management of cloud resources, keeping your infrastructure scalable, secure, and easy to manage. These tools collectively ensure that platform engineering can handle automation scripts, monitor applications, maintain site reliability, and manage infrastructure smoothly.

The Future is AI-Powered:

The platform engineering landscape is constantly evolving, and AI is rapidly transforming how we build and manage software delivery pipelines. The tools like Terraform, Kubecost, Jenkins X, and New Relic AI facilitate AI capabilities like:

  • Enhance security
  • Predict infrastructure requirements
  • Optimize resource security 
  • Predictive maintenance
  • Optimize monitoring process and cost

Conclusion

Platform engineering is becoming the cornerstone of modern software development. Gartner estimates that by 2026, 80% of development companies will have internal platform services and teams to improve development efficiency. This surge underscores the critical role platform engineering plays in accelerating software delivery and gaining a competitive edge.

With a strong foundation in platform engineering, organizations can achieve greater agility, scalability, and efficiency in the ever-changing software landscape. Are you ready to embark on your platform engineering journey?

Building a robust platform requires careful planning, collaboration, and a deep understanding of your team’s needs. At Mantra Labs, we can help you accelerate your software delivery. Connect with us to know more. 

Cancel

Knowledge thats worth delivered in your inbox

Machines That Make Up Facts? Stopping AI Hallucinations with Reliable Systems

There was a time when people truly believed that humans only used 10% of their brains, so much so that it fueled Hollywood Movies and self-help personas promising untapped genius. The truth? Neuroscientists have long debunked this myth, proving that nearly all parts of our brain are active, even when we’re at rest. Now, imagine AI doing the same, providing information that is untrue, except unlike us, it doesn’t have a moment of self-doubt. That’s the bizarre and sometimes dangerous world of AI hallucinations.

AI hallucinations aren’t just funny errors; they’re a real and growing issue in AI-generated misinformation. So why do they happen, and how do we build reliable AI systems that don’t confidently mislead us? Let’s dive in.

Why Do AI Hallucinations Happen?

AI hallucinations happen when models generate errors due to incomplete, biased, or conflicting data. Other reasons include:

  • Human oversight: AI mirrors human biases and errors in training data, leading to AI’s false information
  • Lack of reasoning: Unlike humans, AI doesn’t “think” critically—it generates predictions based on patterns.

But beyond these, what if AI is too creative for its own good?

‘Creativity Gone Rogue’: When AI’s Imagination Runs Wild

AI doesn’t dream, but sometimes it gets ‘too creative’—spinning plausible-sounding stories that are basically AI-generated fake data with zero factual basis. Take the case of Meta’s Galactica, an AI model designed to generate scientific papers. It confidently fabricated entire studies with fake references, leading Meta to shut it down in three days.

This raises the question: Should AI be designed to be ‘less creative’ when AI trustworthiness matters?

The Overconfidence Problem

Ever heard the phrase, “Be confident, but not overconfident”? AI definitely hasn’t.

AI hallucinations happen because AI lacks self-doubt. When it doesn’t know something, it doesn’t hesitate—it just generates the most statistically probable answer. In one bizarre case, ChatGPT falsely accused a law professor of sexual harassment and even cited fake legal documents as proof.

Take the now-infamous case of Google’s Bard, which confidently claimed that the James Webb Space Telescope took the first-ever image of an exoplanet, a factually incorrect statement that went viral before Google had to step in and correct it.

There are more such multiple instances where AI hallucinations have led to Human hallucinations. Here are a few instances we faced.

When we tried the prompt of “Padmavaat according to the description of Malik Muhammad Jayasi-the writer ”

When we tried the prompt of “monkey to man evolution”

Now, if this is making you question your AI’s ability to get things right, then you should probably start looking have a checklist to check if your AI is reliable.

Before diving into solutions. Question your AI. If it can do these, maybe these will solve a bit of issues:

  • Can AI recognize its own mistakes?
  • What would “self-awareness” look like in AI without consciousness?
  • Are there techniques to make AI second-guess itself?
  • Can AI “consult an expert” before answering?

That might be just a checklist, but here are the strategies that make AI more reliable:

Strategies for Building Reliable AI

1. Neurosymbolic AI

It is a hybrid approach combining symbolic reasoning (logical rules) with deep learning to improve factual accuracy. IBM is pioneering this approach to build trustworthy AI systems that reason more like humans. For example, RAAPID’s solutions utilize this approach to transform clinical data into compliant, profitable risk adjustment, improving contextual understanding and reducing misdiagnoses.

2. Human-in-the-Loop Verification

Instead of random checks, AI can be trained to request human validation in critical areas. Companies like OpenAI and Google DeepMind are implementing real-time feedback loops where AI flags uncertain responses for review. A notable AI hallucination prevention use case is in medical AI, where human radiologists verify AI-detected anomalies in scans, improving diagnostic accuracy.

3. Truth Scoring Mechanism

IBM’s FactSheets AI assigns credibility scores to AI-generated content, ensuring more fact-based responses. This approach is already being used in financial risk assessment models, where AI outputs are ranked by reliability before human analysts review them.

4. AI ‘Memory’ for Context Awareness

Retrieval-Augmented Generation (RAG) allows AI to access verified sources before responding. This method is already being used by platforms like Bing AI, which cites sources instead of generating standalone answers. In legal tech, RAG-based models ensure AI-generated contracts reference actual legal precedents, reducing AI accuracy problems.

5. Red Teaming & Adversarial Testing

Companies like OpenAI and Google regularly use “red teaming”—pitting AI against expert testers who try to break its logic and expose weaknesses. This helps fine-tune AI models before public release. A practical AI reliability example is cybersecurity AI, where red teams simulate hacking attempts to uncover vulnerabilities before systems go live 

The Future: AI That Knows When to Say, “I Don’t Know”

One of the most important steps toward reliable AI is training models to recognize uncertainty. Instead of making up answers, AI should be able to respond with “I’m unsure” or direct users to validated sources. Google DeepMind’s Socratic AI model is experimenting with ways to embed self-doubt into AI.

Conclusion:

AI hallucinations aren’t just quirky mistakes—they’re a major roadblock in creating trustworthy AI systems. By blending techniques like neurosymbolic AI, human-in-the-loop verification, and retrieval-augmented generation, we can push AI toward greater accuracy and reliability.

But here’s the big question: Should AI always strive to be 100% factual, or does some level of ‘creative hallucination’ have its place? After all, some of the best innovations come from thinking outside the box—even if that box is built from AI-generated data and machine learning algorithms.

At Mantra Labs, we specialize in data-driven AI solutions designed to minimize hallucinations and maximize trust. Whether you’re developing AI-powered products or enhancing decision-making with machine learning, our expertise ensures your models provide accurate information, making life easier for humans

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot