Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

NodeJS vs Java vs Python

4 minutes, 57 seconds read

The evolution of the language or tool depends on the problem statement and advancement of hardware.With the emergence of cloud computing few languages like Java, PHP, .NET, Python, JS and their respective tool sets are in trend. In this article we shall concentrate on three technologies i.e Java, Node JS and Python and see a comparative study of them.

The internal workings

Here I want to present the working principle of the three. One thing is clear, Java is the only compiled language but Node JS and Python are interpreted languages.

Working Principle of Java, NodeJs, Python

For beginners that may not be a big deal, but this may change the whole discourse. When we compile the code, it is ready to consume by the hardware but when it’s interpreted the code is converted to byte code on the runtime, it may turn out to 10X performance improvement depending upon the situation.

Following is the table which will depict execution time, CPU, memory utilization and the code size for some standard algorithms. Credit goes to benchmarksgame-team. For details of the unit, you can refer here.

Algorithm Comparison Table: NodeJs vs Java vs Python

The following table depicts the comparison between on the basis of speed, performance, scalability and more:

ParametersNodeJsPythonJava
SpeedFasterFastFastest
PerformanceLowHighHigh
ScalabilityHighestMediumHigh
SimplicityMediumVery SimpleSimple
CommunityStrongStrongStrong
LibraryExcellentGoodGood
CostFreeFreePaid
Cross-functionalityHighHighHigh

Speed

As Java is compiled as bytecode and statically linked code the performance is always faster, in most of the cases ten times faster than the other two. There are a few odd cases where Java falls short of speed. In those cases, it boils down to mismatched use cases, legacy code, and wrong coding practices.

NodeJs speed is better than Python thanks to the V8 engine. The V8 engine interprets the javascript code to machine language and optimizes the solution to reduce load time. NodeJs programs run on a single thread. However, you can easily find multi-threaded libraries. The libraries were used to create a thread pool and used multiple CPU cores simultaneously in the background.

Performance

Computer performance is the amount of useful work accomplished by the computer system. So the performance of a system depends on the right kind of technology picked for a particular workload. Java naturally supports multithreading hence if an application does heavy parallel processing, it will be really a great choice. If an application makes lots of networks, it calls Node JS which will be the winner as it naturally supports event-driven programming and hence asynchronous programming. Python is mostly evolving as a middle ground to achieve a decent performance and it always has the advantage of being a simple language to learn.

Scalability

Looking at the current evolution of cloud infrastructure, to achieve scalability using infrastructure tricks for stateless web applications is a norm. The real challenge is to scale a stateful application. The scalability depends on the purpose of the application and the technology we pick.

Node.js is quite scalable, owing to microservices, event-driven architecture, and non-blocking I/O. It allows the creation of microservices and modules. Whenever the solution expands, these microservices and modules resort to dynamic process runs and keep the performance and speed in check.

Java being garbage collected by the resource optimized JVM, it becomes a decent choice to scale.

Python is hard to scale as it’s dynamically typed it’s always slower. As the code goes the system also gets slower and the system gets too tangled.

Simplicity

It is measured as the amount of time one needs to spend learning the language and using it. So it boils down to the familiarity with syntax, expressions and concepts. Also with ease, a developer adapts an existing project and starts contributing.

Java is object-oriented programming and memory management is taken care of by the JVM hence its learning curve is small.

Python on the other hand is a high-level language and its syntax is more intuitive. Hence the learning curve is even smaller than Java and that is definitely the factor used in most non-software industries like data science and others.

The learning curve of the NodeJs is simple too, but the inner workings of the run time environment like async programming, hook, and patterns are difficult to grasp. 

Community

All of them established themself in their own markets. Both Java and Python have been around for quite a long time and have healthy communities. NodeJs is a relatively new technology still looking at the adaptation and as its open-source, it has a sizable community.

Library

All three have a voluminous library to support various functions and they are well documented. 

When working with NodeJs, you will find NPM (NodeJs Package Manager.) It is a free online repository that fuels and simplifies JavaScript development by storing NodeJs packages.

Cost

Python comes with lots of open source libraries and frameworks that help to reduce the cost of python.  Whereas Java is now owned by Oracle and it’s licensed and to get the support we need to pay the license cost. The cost involved for NodeJs using the NPM packages is cost-free, there will be a cost involved for the paid library for payment gateway and third-party integration.

Cross-Functional

All of the above work seamlessly across different environments. As Java is meant for code once and it will run everywhere hence it’s suitable for network application, parallel processing, and web application development. Python can easily run as far as the runtime remains the same, it’s suitable for web applications and data science applications. NodeJs works for multiple OS and devices hence it’s good for web applications and cloud-based IoT solutions.

Conclusion

There is no winner or loser in these comparisons, many factors depend on the tools or language that we use, it depends on the problem we are resolving, the performance criteria, the compatibility to the existing framework and toolsets. Finally the learning curve of the team who will use this.

About the author:

Manoj is Solution Architect at Mantra Labs working on cloud native solutions. He loves to follow emerging trends in Software technology. Currently, he is working on Cloud Native tools and technologies.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot