Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(32)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(150)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

NodeJS vs Java vs Python

4 minutes, 57 seconds read

The evolution of the language or tool depends on the problem statement and advancement of hardware.With the emergence of cloud computing few languages like Java, PHP, .NET, Python, JS and their respective tool sets are in trend. In this article we shall concentrate on three technologies i.e Java, Node JS and Python and see a comparative study of them.

The internal workings

Here I want to present the working principle of the three. One thing is clear, Java is the only compiled language but Node JS and Python are interpreted languages.

Working Principle of Java, NodeJs, Python

For beginners that may not be a big deal, but this may change the whole discourse. When we compile the code, it is ready to consume by the hardware but when it’s interpreted the code is converted to byte code on the runtime, it may turn out to 10X performance improvement depending upon the situation.

Following is the table which will depict execution time, CPU, memory utilization and the code size for some standard algorithms. Credit goes to benchmarksgame-team. For details of the unit, you can refer here.

Algorithm Comparison Table: NodeJs vs Java vs Python

The following table depicts the comparison between on the basis of speed, performance, scalability and more:

ParametersNodeJsPythonJava
SpeedFasterFastFastest
PerformanceLowHighHigh
ScalabilityHighestMediumHigh
SimplicityMediumVery SimpleSimple
CommunityStrongStrongStrong
LibraryExcellentGoodGood
CostFreeFreePaid
Cross-functionalityHighHighHigh

Speed

As Java is compiled as bytecode and statically linked code the performance is always faster, in most of the cases ten times faster than the other two. There are a few odd cases where Java falls short of speed. In those cases, it boils down to mismatched use cases, legacy code, and wrong coding practices.

NodeJs speed is better than Python thanks to the V8 engine. The V8 engine interprets the javascript code to machine language and optimizes the solution to reduce load time. NodeJs programs run on a single thread. However, you can easily find multi-threaded libraries. The libraries were used to create a thread pool and used multiple CPU cores simultaneously in the background.

Performance

Computer performance is the amount of useful work accomplished by the computer system. So the performance of a system depends on the right kind of technology picked for a particular workload. Java naturally supports multithreading hence if an application does heavy parallel processing, it will be really a great choice. If an application makes lots of networks, it calls Node JS which will be the winner as it naturally supports event-driven programming and hence asynchronous programming. Python is mostly evolving as a middle ground to achieve a decent performance and it always has the advantage of being a simple language to learn.

Scalability

Looking at the current evolution of cloud infrastructure, to achieve scalability using infrastructure tricks for stateless web applications is a norm. The real challenge is to scale a stateful application. The scalability depends on the purpose of the application and the technology we pick.

Node.js is quite scalable, owing to microservices, event-driven architecture, and non-blocking I/O. It allows the creation of microservices and modules. Whenever the solution expands, these microservices and modules resort to dynamic process runs and keep the performance and speed in check.

Java being garbage collected by the resource optimized JVM, it becomes a decent choice to scale.

Python is hard to scale as it’s dynamically typed it’s always slower. As the code goes the system also gets slower and the system gets too tangled.

Simplicity

It is measured as the amount of time one needs to spend learning the language and using it. So it boils down to the familiarity with syntax, expressions and concepts. Also with ease, a developer adapts an existing project and starts contributing.

Java is object-oriented programming and memory management is taken care of by the JVM hence its learning curve is small.

Python on the other hand is a high-level language and its syntax is more intuitive. Hence the learning curve is even smaller than Java and that is definitely the factor used in most non-software industries like data science and others.

The learning curve of the NodeJs is simple too, but the inner workings of the run time environment like async programming, hook, and patterns are difficult to grasp. 

Community

All of them established themself in their own markets. Both Java and Python have been around for quite a long time and have healthy communities. NodeJs is a relatively new technology still looking at the adaptation and as its open-source, it has a sizable community.

Library

All three have a voluminous library to support various functions and they are well documented. 

When working with NodeJs, you will find NPM (NodeJs Package Manager.) It is a free online repository that fuels and simplifies JavaScript development by storing NodeJs packages.

Cost

Python comes with lots of open source libraries and frameworks that help to reduce the cost of python.  Whereas Java is now owned by Oracle and it’s licensed and to get the support we need to pay the license cost. The cost involved for NodeJs using the NPM packages is cost-free, there will be a cost involved for the paid library for payment gateway and third-party integration.

Cross-Functional

All of the above work seamlessly across different environments. As Java is meant for code once and it will run everywhere hence it’s suitable for network application, parallel processing, and web application development. Python can easily run as far as the runtime remains the same, it’s suitable for web applications and data science applications. NodeJs works for multiple OS and devices hence it’s good for web applications and cloud-based IoT solutions.

Conclusion

There is no winner or loser in these comparisons, many factors depend on the tools or language that we use, it depends on the problem we are resolving, the performance criteria, the compatibility to the existing framework and toolsets. Finally the learning curve of the team who will use this.

About the author:

Manoj is Solution Architect at Mantra Labs working on cloud native solutions. He loves to follow emerging trends in Software technology. Currently, he is working on Cloud Native tools and technologies.

Cancel

Knowledge thats worth delivered in your inbox

The Future-Ready Factory: The Power of Predictive Analytics in Manufacturing

In 1989, a missing $0.50 bolt led to the mid-air explosion of United Airlines Flight 232. The smallest oversight in manufacturing can set off a chain reaction of failures. Now, imagine a factory floor where thousands of components must function flawlessly—what happens if one critical part is about to fail but goes unnoticed? Predictive analytics in manufacturing ensures these unseen risks don’t turn into catastrophic failures by providing foresight into potential breakdowns, supply chain risk analytics, and demand fluctuations—allowing manufacturers to act before issues escalate into costly problems.

Industrial predictive analytics involves using data analysis and machine learning in manufacturing to identify patterns and predict future events related to production processes. By combining historical data, machine learning, and statistical models, manufacturers can derive valuable insights that help them take proactive measures before problems arise.

Beyond just improving efficiency, predictive maintenance in manufacturing is the foundation of proactive risk management, helping manufacturers prevent costly downtime, safety hazards, and supply chain disruptions. By leveraging vast amounts of data, predictive analytics enables manufacturers to anticipate machine failures, optimize production schedules, and enhance overall operational resilience.

But here’s the catch, models that predict failures today might not be necessarily effective tomorrow. And that’s where the real challenge begins.

Why Predictive Analytics Models Need Retraining?

Predictive analytics in manufacturing relies on historical data and machine learning to foresee potential failures. However, manufacturing environments are dynamic, machines degrade, processes evolve, supply chains shift, and external forces such as weather and geopolitics play a bigger role than ever before.

Without continuous model retraining, predictive models lose their accuracy. A recent study found that 91% of data-driven manufacturing models degrade over time due to data drift, requiring periodic updates to remain effective. Manufacturers relying on outdated models risk making decisions based on obsolete insights, potentially leading to catastrophic failures.

The key is in retraining models with the right data, data that reflects not just what has happened but what could happen next. This is where integrating external data sources becomes crucial.

Is Integrating External Data Sources Crucial?

Traditional smart manufacturing solutions primarily analyze in-house data: machine performance metrics, maintenance logs, and operational statistics. While valuable, this approach is limited. The real breakthroughs happen when manufacturers incorporate external data sources into their predictive models:

  • Weather Patterns: Extreme weather conditions have caused billions in manufacturing risk management losses. For example, the 2021 Texas power crisis disrupted semiconductor production globally. By integrating weather data, manufacturers can anticipate environmental impacts and adjust operations accordingly.
  • Market Trends: Consumer demand fluctuations impact inventory and supply chains. By leveraging market data, manufacturers can avoid overproduction or stock shortages, optimizing costs and efficiency.
  • Geopolitical Insights: Trade wars, regulatory shifts, and regional conflicts directly impact supply chains. Supply chain risk analytics combined with geopolitical intelligence helps manufacturers foresee disruptions and diversify sourcing strategies proactively.

One such instance is how Mantra Labs helped a telecom company optimize its network by integrating both external and internal data sources. By leveraging external data such as radio site conditions and traffic patterns along with internal performance reports, the company was able to predict future traffic growth and ensure seamless network performance.

The Role of Edge Computing and Real-Time AI

Having the right data is one thing; acting on it in real-time is another. Edge computing in manufacturing processes, data at the source, within the factory floor, eliminating delays and enabling instant decision-making. This is particularly critical for:

  • Hazardous Material Monitoring: Factories dealing with volatile chemicals can detect leaks instantly, preventing disasters.
  • Supply Chain Optimization: Real-time AI can reroute shipments based on live geopolitical updates, avoiding costly delays.
  • Energy Efficiency: Smart grids can dynamically adjust power consumption based on market demand, reducing waste.

Conclusion:

As crucial as predictive analytics is in manufacturing, its true power lies in continuous evolution. A model that predicts failures today might be outdated tomorrow. To stay ahead, manufacturers must adopt a dynamic approach—refining predictive models, integrating external intelligence, and leveraging real-time AI to anticipate and prevent risks before they escalate.

The future of smart manufacturing solutions isn’t just about using predictive analytics—it’s about continuously evolving it. The real question isn’t whether predictive models can help, but whether manufacturers are adapting fast enough to outpace risks in an unpredictable world.

At Mantra Labs, we specialize in building intelligent predictive models that help businesses optimize operations and mitigate risks effectively. From enhancing efficiency to driving innovation, our solutions empower manufacturers to stay ahead of uncertainties. Ready to future-proof your factory? Let’s talk.

In the manufacturing industry, predictive analytics plays an important role, providing predictions on what will happen and how to do things. But then the question is, are these predictions accurate? And if they are, how accurate are these predictions? Does it consider all the factors, or is it obsolete?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot