Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(32)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(150)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Four New Consumer-centric Business Models in Insurance

The insurance industry is changing and experts predict — nearly one-third of existing insurance models will disappear within this decade. The fierce competition, new opportunities with technologies like AI, and on top of that millennials’ changing preferences sum up to the call for more flexible and consumer-facing business models. Here are four new business models to set the insurance archetype.

Source: The Deloitte Global Millennial Survey 2019 

Social Good & Transparency as a Business Model

Currently, AI is being used to strengthen the capabilities and knowledge of insurers and not consumers, creating information asymmetry. But, the question is — for how long will the consumers accept being a victim of ignorance. 

A possible solution to this situation is bringing information transparency. It’s not like traditional insurers don’t share policy information with their customers. They do. However, lengthy policy documents and customers’ reliance on agents for information shadows the actual coverage, terms, etc. In a way, the information that customers receive becomes dependent on the agents’ knowledge and intentions.

Translating policy, terms and conditions documents into consumable bits of information with a clear distinction between what’s covered and what’s not will help in achieving transparency between insurers and customers.

For instance, Lemonade — the American Insurtech for renters and home insurance, disrupted the industry lately with their instant and transparent end-to-end insurance process. Their consumers are better aware of coverage and claims thanks to simplicity in the user experience. 

Moreover, Lemonade donates the unclaimed premiums to social causes their consumers care about. From its inception in 2015 to date, Lemonade has sold over 1.2 million policies, in complete transparency and all through their AI bot — Maya!

Nearly 46% of millennials are willing to make a positive impact on the society/community. Lemonade has partnered with 92 charities and has donated $8,46,849 from unclaimed premiums. Hence, the answer.

Similarly, Swedish InsurTech Hedvig has successfully deployed it’s “nice insurance” services, giving back 80% of the unclaimed premiums to charities chosen by the customers.

More insights on — millennials and their expectations from insurance ‘beyond’ convenience.

webinar: AI for data-driven Insurers

Join our Webinar — AI for Data-driven Insurers: Challenges, Opportunities & the Way Forward hosted by our CEO, Parag Sharma as he addresses Insurance business leaders and decision-makers on April 14, 2020.

B2B2C or API-based Model

When user acquisition is the top priority, B2B2C or API-based model comes into action. Also known as an open-source platform solution, this business model connects people and processes with technology infrastructure and assets to manage user interactions. 

In the API-based model, apart from traditional distribution channels, 3rd party apps also become a medium for customers to buy/access insurance policies. Automation plays a key role in this insurance model. Here, any other customer-centric digital application can install the API without manual/human intervention.

API-based Insurance Model Affinity Distribution Channel

For example, in January 2018, Allianz announced that it will offer parts of its Allianz Business System (ABS) to other insurance companies for free. Interested organizations can simply install the API (Application Programming Interface, which is nothing but a chunk of software that connects two different apps) and start selling Allianz policies to their customers.

Lemonade — after disrupting the insurance space through transparency, has now stepped into this model. In October 2017, the company launched its public API, allowing anyone to distribute Lemonade’s policies through their websites or apps.

“It takes years to pull together the licenses, capital, and technology needed to offer insurance instantly through an app, which is why it’s almost nonexistent. Today’s API launch changes that. Anyone with a slight familiarity with coding can now include these capabilities in their app, in a matter of hours.”

Shai Wininger, Co-founder, President & COO, Lemonade

P2P Insurance

Unclaimed premiums also contribute to conflicts between insurers and policyholders. What if a customer is not interested in donating to charity, unlike mentioned in the above case? 

Peer-to-Peer (P2P) insurance is perhaps an answer to eliminate premium settlement conflicts. It is also an emerging business model to access insurance coverage at lower costs than most of the traditional insurances. 

This insurance model pools the individuals who share at least one relation — friends, family, or interest (community/clubs) and it serves two-fold benefits-

  1. Every member knows other members, funds available, and claims initiated/processed. Therefore, irrespective of the information shared by the insurer, there’s a transparent collaboration among peers.
  2. Since the members know each other socially, there’s a negligible chance of fraudulent claims. For instance, in the US alone, insurance frauds amount to nearly $80 billion/year.

Also read – how behavioral psychology is fixing modern insurance claims

The notion of financial protection for the community has been prevalent in our societies since the 1600s. In the middle ages, the tradesmen followed the guild system (an association of craftsmen and merchants), where participants paid fees as a kind of insurance safety net. Though, the successful conceptualization of P2P insurance in the modern business models dates back to 2010 with German InsurTech — Friensurance. However, the P2P insurance model has credited the success to many more InsurTechs like Guevara, Axieme, TongJuBao (P2Pprotect), and PeerCover

Microinsurance

The greatest limiting factor for the success of microinsurance is distribution. For example, in the US, 18% of the premium represents the distribution cost, set aside marketing and advertising costs. Availability isn’t the issue for microinsurance. 

The new business model for microinsurance focuses on outreaching and distributing policies at scale. Workflow automation solutions like document processing, automated customer query resolution, etc. make microinsurance models more effective. 

  1. Aggregator model: Instead of traditional agents, retailers, utility or mobile network operators, etc. can be intermediaries for the distribution of microinsurance policies. They provide access to a very large consumer base and even more with free and freemium coverages. For example, Check24, a European aggregator together with HDI insurance developed AurumPROTECT that is available exclusively through aggregators channels. 
  2. Harnessing proxy insurance sales force: Banks have been the ideal partners to distribute microinsurance policies at scale for ages. But, for short-term policies, this is a good time to utilize the agents of other products to offer insurance as an ancillary product. For example, Ola — an Indian cab aggregator provides a number of travel-related microinsurance underwritten by Acko General Insurance. 

The Bottom Line

The effectiveness of each of these models drills down to the smart use of technology in their implementations. Moreover, most of these business models are automated, thus, eliminating additional human resources for implementations. For instance, in India, an agent can charge up to 20% of the premium amount as fees, which can reduce significantly if the distribution is automated. Investment in technology for automating operations is also worth it because it makes customer outreach simpler and faster. 

Also, read – 5 Front-office operations in Insurance you can automate with AI.

Cancel

Knowledge thats worth delivered in your inbox

The Future-Ready Factory: The Power of Predictive Analytics in Manufacturing

In 1989, a missing $0.50 bolt led to the mid-air explosion of United Airlines Flight 232. The smallest oversight in manufacturing can set off a chain reaction of failures. Now, imagine a factory floor where thousands of components must function flawlessly—what happens if one critical part is about to fail but goes unnoticed? Predictive analytics in manufacturing ensures these unseen risks don’t turn into catastrophic failures by providing foresight into potential breakdowns, supply chain risk analytics, and demand fluctuations—allowing manufacturers to act before issues escalate into costly problems.

Industrial predictive analytics involves using data analysis and machine learning in manufacturing to identify patterns and predict future events related to production processes. By combining historical data, machine learning, and statistical models, manufacturers can derive valuable insights that help them take proactive measures before problems arise.

Beyond just improving efficiency, predictive maintenance in manufacturing is the foundation of proactive risk management, helping manufacturers prevent costly downtime, safety hazards, and supply chain disruptions. By leveraging vast amounts of data, predictive analytics enables manufacturers to anticipate machine failures, optimize production schedules, and enhance overall operational resilience.

But here’s the catch, models that predict failures today might not be necessarily effective tomorrow. And that’s where the real challenge begins.

Why Predictive Analytics Models Need Retraining?

Predictive analytics in manufacturing relies on historical data and machine learning to foresee potential failures. However, manufacturing environments are dynamic, machines degrade, processes evolve, supply chains shift, and external forces such as weather and geopolitics play a bigger role than ever before.

Without continuous model retraining, predictive models lose their accuracy. A recent study found that 91% of data-driven manufacturing models degrade over time due to data drift, requiring periodic updates to remain effective. Manufacturers relying on outdated models risk making decisions based on obsolete insights, potentially leading to catastrophic failures.

The key is in retraining models with the right data, data that reflects not just what has happened but what could happen next. This is where integrating external data sources becomes crucial.

Is Integrating External Data Sources Crucial?

Traditional smart manufacturing solutions primarily analyze in-house data: machine performance metrics, maintenance logs, and operational statistics. While valuable, this approach is limited. The real breakthroughs happen when manufacturers incorporate external data sources into their predictive models:

  • Weather Patterns: Extreme weather conditions have caused billions in manufacturing risk management losses. For example, the 2021 Texas power crisis disrupted semiconductor production globally. By integrating weather data, manufacturers can anticipate environmental impacts and adjust operations accordingly.
  • Market Trends: Consumer demand fluctuations impact inventory and supply chains. By leveraging market data, manufacturers can avoid overproduction or stock shortages, optimizing costs and efficiency.
  • Geopolitical Insights: Trade wars, regulatory shifts, and regional conflicts directly impact supply chains. Supply chain risk analytics combined with geopolitical intelligence helps manufacturers foresee disruptions and diversify sourcing strategies proactively.

One such instance is how Mantra Labs helped a telecom company optimize its network by integrating both external and internal data sources. By leveraging external data such as radio site conditions and traffic patterns along with internal performance reports, the company was able to predict future traffic growth and ensure seamless network performance.

The Role of Edge Computing and Real-Time AI

Having the right data is one thing; acting on it in real-time is another. Edge computing in manufacturing processes, data at the source, within the factory floor, eliminating delays and enabling instant decision-making. This is particularly critical for:

  • Hazardous Material Monitoring: Factories dealing with volatile chemicals can detect leaks instantly, preventing disasters.
  • Supply Chain Optimization: Real-time AI can reroute shipments based on live geopolitical updates, avoiding costly delays.
  • Energy Efficiency: Smart grids can dynamically adjust power consumption based on market demand, reducing waste.

Conclusion:

As crucial as predictive analytics is in manufacturing, its true power lies in continuous evolution. A model that predicts failures today might be outdated tomorrow. To stay ahead, manufacturers must adopt a dynamic approach—refining predictive models, integrating external intelligence, and leveraging real-time AI to anticipate and prevent risks before they escalate.

The future of smart manufacturing solutions isn’t just about using predictive analytics—it’s about continuously evolving it. The real question isn’t whether predictive models can help, but whether manufacturers are adapting fast enough to outpace risks in an unpredictable world.

At Mantra Labs, we specialize in building intelligent predictive models that help businesses optimize operations and mitigate risks effectively. From enhancing efficiency to driving innovation, our solutions empower manufacturers to stay ahead of uncertainties. Ready to future-proof your factory? Let’s talk.

In the manufacturing industry, predictive analytics plays an important role, providing predictions on what will happen and how to do things. But then the question is, are these predictions accurate? And if they are, how accurate are these predictions? Does it consider all the factors, or is it obsolete?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot