Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Model selection with cross-validation: A quest for an elite model

3 minutes, 13 seconds read

What do you call a prediction model that performs tremendously well on the same data it was trained on? Technically, a tosh! It will perform feebly on unseen data, thus leading to a state called overfitting

To combat such a scenario, the dataset is split into train set and test set. The model is then trained on the train set and is kept deprived of the test set. This test set is utilized to estimate the efficacy of the model. To decide on the best train-test split, two competing cornerstones need to be focused on. Firstly, less training data will give rise to greater variance in the parameter estimates, and secondly, less testing data will lead to greater variance in the performance statistic. Conventionally, an 80/20 split is considered to be a suitable starting point such that neither variance is too high. 

Yet another problem arises when we try to fine-tune the hyperparameters. There is a possibility for the model to still overfit on the testing data due to data leakage. To prevent this, a dataset should typically be divided into train, validation, and test sets. The validation set acts as an intermediary between the training part and the final evaluation part. However, this indeed reduces the training examples, thus making it less likely for the model to generalize, and the performance rather depends merely on a random split. 

Here’s where cross-validation comes to our rescue!

Cross-validation (CV) eliminates the explicit requirement of a validation set. It facilitates the model selection and aids in gauging the generalizing capability of a model. The rudimentary modus operandi is the k-fold CV, where the dataset is split into k groups/folds and k-1 folds are used to train the model, while the held out kth fold is used to validate the model. Henceforth, each fold gets an opportunity to be used as a test set. This way, in each fold, the evaluation score is retained and the model is then discarded. The model’s skill is summarised by the mean of the evaluation scores. The variance of the evaluated scores is often expressed in terms of standard deviation.

5-fold cross validation

But is it feasible when the dataset is imbalanced? 

Probably not! In case of imbalanced data an extension to k-fold CV, called Stratified k-fold CV proves to be the magic bullet. It maintains the class proportion in all the folds as it was in the original dataset, thus making it available for the model to train on both, the minority as well as majority classes. 

stratified 5-fold cross validation

Determining the value of k

This is a baffling concern though!  Taking into account the bias-variance trade-off, the value of k should be decided carefully. Consequently, the k value should be chosen such that each fold can act as a representative of the dataset. Jumping on the bandwagon, it is preferred to set the k value as 5 or 10 since experimental success is observed with these values. 

There are some other variations of cross-validation viz.,

  1. Leave One Out CV (LOOCV): Only one sample is held out for the validation part
  2. Leave P Out CV (LPOCV): Similar to LOOCV, P samples are held out for the validation part
  3. Nested CV: Each fold involves cross-validation, making it a double cross-validation. It is generally used when tuning hyperparameters

Finally yet importantly, some tidbits that shouldn’t be ignored:

  • It is important to shuffle the data before moving ahead with cross-validation
  • To avoid data leakage, any data preparation step should be carried out on the training data within the cross-validation loop
  • It is preferable to repeat the cross-validation procedure by using repeated k-fold or repeated stratified k-fold CV for more reliable results especially, the variance in the performance metrics. 

Voila! We finally made it! If the model evaluation scores are acceptably high and have low variance, it’s time to party hard! Our mojo has worked! 

Further Readings:

  1.  5 Proven Strategies to Break Through the Data Silos
  2. Speech is the next UX
  3. The Next Big Thing for Big Tech: AI as a Service
  4. Insurtechs are Thriving with Machine Learning. Here’s how.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot