Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Here’s How You Measure the ROI from Chatbots

5 minutes, 6 seconds read

IBM reports that globally businesses spend over $1.3 trillion/year to handle roughly 265 billion customer calls. Chatbots spring up to minimize the expenditure on handling customer queries, especially the most redundant ones.

It’s quite common for businesses to assess the return on investment before adopting new technology.

However, ROI from chatbots may vary according to the purpose it serves. For example, an insurance chatbot ROI differs from that of an HR chatbot. Here are certain parameters to consider for calculating the return on investment from chatbots.

#1 Average Human Live-chat Cost

The total number of tickets raised per month and the number of agents involved gives an idea of the average price per contact.

According to Help Desk Institute, the average cost/minute for a live chat is $1.05, while the average cost per chat session is $16.80. Assuming an organization handles 10,000 chats in a month, the cost incurred sums up to $168,000/month.

Depending on the number of people involved and their compensation, you can calculate the amount you’re spending on your organization’s customer support. Here’s a salary reference, which can be used in further calculations.

sample customer support operational cost

The salaries mentioned are referred from Job Futuromat 2019 wrt 12 months, 18 working days, 8 hours.

The actual operational cost also depends on material resources invested like office space, conveyance, communications, gadgets, etc. You can consider these aspects on your chatbot ROI calculator.

#2 Bot Installation Cost

The phases of bot installation cost involves brainstorming sessions, integration, and training both bots and agents.

During kick-off sessions, stakeholders discuss the scope of the bot, define goals and responsibilities, and make a project plan. After this, programmers and managers integrate the bot on the organization’s website and other platforms. Customizing the bot according to the client’s support cases covers the bot training phase. Testing the bot and training agents to use it are also factored into the ‘bot’ installation costs.

According to Ometrics, the average development charge for a chatbot may range from $1,000 to $5,000. But, this is a one-time charge, and after that the bot-developer may bill for maintenance charges.

chatbot roi calculator: installation cost

If the chatbot requires a higher level of customization, then the bot-developer may also claim additional charges. Also, the number of days spent for bot installation varies according to industries and organizations.

#3 Gains through Bots

Here we’re assuming all the customer queries are routed through the bot and it is accurate 50% of the time. Out of the 50% queries handled by a bot, if half of them are self-served and the remaining required human intervention, then monthly gains from the bot can be-

chatbot roi calculator: gains from chatbot

You can find the exact cases and accuracy from your bot’s analytics dashboard.

#4 Monthly Maintenance Cost

Like humans, bots also require human assistance for its successful operation. Its monthly maintenance cost is a summation of the organization’s human resources it needs and developer’s charges. Here, let’s assume a chatbot maintenance fee, which ranges from $100 to $1,000 a month. Similar to the bot development charges, maintenance fees vary according to bot capabilities.

chatbot roi calculator: montly maintenance cost

#5 Chatbots Return on Investment Calculation

The return on investment is a ratio of benefit from the investment to the cost of investment. It evaluates the efficiency of an investment. Mathematically, ROI = (Current Value of Investment – Cost of Investment) / Cost of Investment.

Since chatbots incur a one-time development cost and recurring monthly maintenance cost, here’s the chatbot ROI calculation from both perspectives.

Chatbot ROI during the first month: This includes the bot installation charges. 

For the above case,

ROI = (Gains through bot – Installation charge – maintenance charge)/(installation charge + maintenance charge)

ROI = ($63,000 – $9,292 – $3,647)/($9,292 – $3,647)

ROI = 3.9 or 390%

Chatbot ROI after the first month: This excludes the bot installation charges. 

For the above case,

ROI = (Gains through bot – maintenance charge)/(maintenance charge)

ROI = ($63,000 – $3,647)/($3,647)

ROI = 16.3 or 1630%

Using this method, you can build your own chatbot ROI calculator considering your own business parameters.

NLP and AI-powered chatbots can yield a better return on investment. For instance, Religare has incorporated a service chatbot on its Web portal and WhatsApp integration to handle customer queries. It has resulted in 10 times more customer interaction and 5 times more sales conversion.

Conclusion

For the above case, where bots are able to handle 50% of customer queries, there’s a direct 50% capital gain to the organization. The human-time saved can be utilized for more productive tasks, which can eventually accelerate the organization’s productivity. 

Powerful bots result in better success rates for customer facing operations. For example, Diageo’s iDia chatbot has led to a 55% drop in help desk tickets. 

Here are more enterprise chatbot use cases.

Researchers predict that by 2025, chatbots will accomplish more than 90% of the B2C interactions. Also, chatbots can cut operational costs by more than $8 billion per year in the next three years.

AI Chatbot in Insurance Report

AI in Insurance will value at $36B by 2026. Chatbots will occupy 40% of overall deployment, predominantly within customer service roles.
DOWNLOAD REPORT

We specialize in developing industry-specific AI-powered chatbots. Drop us a word at hello@mantralabsglobal.com to learn more.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot