Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Insurtech: Expectation Vs Reality

The idea behind the implementation of technology in the Insurance sector is to make the Insurance processes much more efficient, comfortable and provide the customers with a simplified interface. In recent years when talks about Insurtech was ripe then it was all about blockchain, IoT, wearables, innovations labs and AI. But, as the things started to roll out, it doesn’t seem to be an easy road with expected results will not be visible anytime soon. The digitalization of the Insurance industry has begun with a boom but the challenges surrounding this whole new era are unlimited, and Insurers need to strike a balance between expectation and the practicalities.

The challenges of the Insurtech industry and Insurance as a service:

1. Data and more data

It is a matter of the fact that the available data for the insurers is unlimited which help them to underwrite policies, detect fraud, price the products that were otherwise not possible traditionally. Insurers are constantly gathering, incorporating data received from automobile sensors, home sensors, Amazon web services, social media channels into their business models. It is a great way to be efficient enough and provide relevant content to the insurants.

Reality: There is a widening gap between the available data and the ability of the insurers to process this data contextually and derive insights into it. The data is something that keeps changing continuously, and it needs to be processed and used quickly for the expected results. But, the truth is that insurers do not have any actionable information around this data as they lack the proper infrastructure for fast processing the datasets.

2. Automated customer service and the chatbots

The impact of AI and machine learning on InsurTech is profound, and it is most visible in the customer service department. The automated chatbots are programmed to provide an instant solution to customer queries without any delays.

Reality: Even though chatbots are being adopted by big insurance companies, but accuracy is still an issue. The more complex the chatbot is, the more problematic it becomes.  No matter how intelligent a chatbot is, it can never replace a human.  Insurers need to ensure that their bots offer a high level of data protection and are compliant with regulatory measures.   There are still customers who want to talk to the customer representative, not an automated agent. So, chatbot can never replace the human representatives it can just be another option of communication.

3. AI and cognitive automation

Data analytics and AI are a boon for the insurance industry. The power of AI backed systems help insurers to accurately price risk, manage claims value and do a lot more than only providing insurance. For example, in health insurance, the insurance product is more like a health assistant and for auto insurance using car sensors for usage-based policies. All this sounds like an insurance-perfect technology which is ready to revolutionize the insurance industry.

Reality: The technical hurdles sprout at every stage of AI implementation. AI helps insurers, but it may prohibit them to consider some factors or introduce some new precise elements. The immense intrusion of AI into the systems poses a roadblock that is the more sophisticated and accurate AI becomes the capability of humans to interpret and understand it keeps growing bleak.  It is a challenge for the state actuaries and the rate reviewers who are responsible for evaluating the vast number of risk-classifications and seeing how it influences other in the process. Rate determination for tomorrow requires a perfect balance between the insurers and the AI-driven risk pricing tools.

From the above, it can be concluded that the insurance industry is rapidly evolving introducing a new wave of innovation. But, the challenges are still persistent and to be successful insurance companies need to employ quality people with competent management and supporting technical infrastructure.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot