Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

InsurTech beyond 2020 will be different. Here’s why.

4 minutes, 41 seconds read

The antiquated commodity of Financial ‘Coverage & Protection’ is getting a new make-over.  Conventional epigrams like ‘Insurance is sold and not bought’ are becoming passé. Customers are now more open than ever before to buying insurance as opposed to being sold by an agent.  The industry itself is witnessing an accelerated digitalization momentum on the backs of 4G, Augmented Reality, and Artificial Intelligence-based technologies like Machine Learning & NLP.

As new technologies and consumer habits keep evolving, so are insurance business models. The reality for many insurance carriers is that they still don’t understand their customers with great accuracy and detail, which is where intermediaries like agents and distributors still hold incredible market power.

On the other hand, distribution channels are turning hybrid, which is forcing carriers to be proficient in their entire channel mix. Customer expectations for 2020 will begin to reflect more simplicity and transparency in their mobility & speed of service delivery.

A recently published Gartner Hype Cycle highlights 29 new and emerging technologies that are bound for greater business impact, that will ultimately dissolve into the fabric of Insurance.

For 2020 and beyond, newer technologies are emerging along with older but more progressively maturing ones creating a wider stream of opportunities for businesses.

Gartner-Hype-Cycle

Irrespective of the technology application adopted by insurers — real, actionable insights is the name of the game. Without it, there can be no long term gains. Forrester research explains “Those that are truly insights-driven businesses will steal $1.2 trillion per annum from their less-informed peers by 2020”.

Based on the major trends identified in the Hype Cycle, 5 of the most near-term disruptive technologies and their use cases, are profiled below.

  • Emotion AI
    Emotion Artificial Intelligence (AI) is purported to detect insurance fraud based on the audio analysis of the caller. This means that an AI system can decisively measure, understand, simulate and react to human emotions in a natural way.

    For Insurers, sentiment and tone analysis captured from chatbots fitted with emotional intelligence can reveal deeper insights into the buying propensity of an individual while also understanding the reasons influencing that decision.

Emotion-Intelligence-Market



Autonomous cars can also sensors, cameras or mics that relay information over the cloud that can be translated into insights concerning the emotional state of the driver, the driving experience of the other passengers, and even the safety level within the vehicle.

Gartner estimates that at least 10% of personal devices will have emotion AI capabilities, either on-device or via the cloud by 2022. Devices with emotion AI capacity is currently around 1%.

  • Augmented Intelligence
    Augmented Intelligence is all about process intelligence. Widely touted as the ‘future of decision-making’, this technology involves a blend of data, analytics and AI working in parallel with human judgement. If Scripting is rules based automation, then ‘Augmenting’ is engagement and decision oriented.

    This manifests today for most insurance carriers as an automated back-office task, but over the next few years, this technology will be found in almost all internal and customer facing operations. Insurers can potentially offer personalised services based on the client’s individual capacity and exposure to risk — creating opportunities for cross/up-selling.
Gartner-Data-Analytics-Trends-Forecast-2019


Source: Gartner Data Analytics Trends for 2019


For instance, Online Identity Verification is an example of a real-time application that not only enhances human’s decision making ability, but also requires human intervention in only highly critical cases. The Global value from Augmented AI Tools will touch $4 Trillion by 2022.

  • AR Cloud
    The AR Cloud is simply put a real-time 3D map of an environment, overlayed onto the real World. Through this, experiences and information can be shared without being tied down to a specific location. Placing virtual content using real world coordinates with associated meta-data can be instantly shared and accessed from any device.

    For insurers, there is a wide range of opportunities to entice shopping customers on an AR-Cloud based platform by presenting personalized insurance products relevant to the items they are considering buying.

    The AR ecosystem will be a great way to explain insurance plans to customers, provide training and guidance for employees, assist in real-time damage estimation, improve the quality of ‘moment-of-truth’ engagements. This affords modern insurance products to co-exist seamlessly along the buying journey.

  • Personification
    Personification is a technology that is wholly dependent on speech and interaction. Through this, people can anthropomorphize themselves and create avatars that can form complex relationships. The Virtual Reality-based concept will be the next way of communicating and forming new interactions.

    VR Applications such as  accident recreation, customer education and live risk assessment, can help insurers lower costs for its customers and personalise the experience.

    Brands have already begun working their way into this space, because as they see it — if younger generations are going to invariably use this technology for longer portions of their day for work, productivity, research, entertainment, even role-playing games, they will shop and buy this way too.

  • Flying Autonomous Vehicles and Light Cargo Drones
    Although this technology is only a decade away from being commercially realized, the non-flying form is about to make its greatest impact since its original conception. Regulations are the biggest obstacle to the technology taking off, while its functionality continues to improve.

    The Transportation & Logistics ecosystem is on the brink of a complete shift, which will create a demand for a wide array of insurance related products and services that covers autonomous vehicles and cargo delivery using light drones.

While automation continues to bridge the gaps, InsurTechs and Insurance Carriers will need to embrace ahead of the curve and adopt newer strategies to drive sustainable growth.

Also read – Key takeaways from the 2019 World InsurTech Report

Mantra Labs is an InsurTech100 company solving complex front & back-office processes for the Digital Insurer. To know more about our products & solutions, drop us a line at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot