Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(152)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

The Importance of Machine Learning for Data Scientists

By :
3 minutes, 7 seconds read

The concept of Machine Learning, Artificial Intelligence (AI), Big Data has been around for a while. But the ability to apply algorithms and mathematical calculations to big data is gathering momentum only recently.     

In this article we will discuss the importance of Machine Learning and why every Data Scientist must master it.

What is Machine Learning?

Simply put, we’re contributing to Machine Learning through our day to day interactions on the internet. Whether you search your coffee maker on Amazon, “top tips to lose weight” In Google, or “friends” in Facebook you see Machine Learning in action, but you don’t realize it.

It is the Machine Learning technology that lets Google, Amazon, and Facebook search engine offer relevant recommendations to the user.

These companies are able to keep tabs on your day to day activity, search behavior and shopping preference with the help of ML technology.

Machine Learning is also one of the main components of Artificial Intelligence.

Who is a Data Scientist?

Before assessing the importance of Machine Learning for Data Scientists, here’s a brief note on who Data Scientists are. We’ll also discuss how one can become a Data Scientist.

Data Scientists draw meaningful information from a huge volume of data. They identify patterns and help build tools like AI-powered chatbots, CRMs, etc. to automate certain processes in a company.

With a sound knowledge of different Machine Learning techniques and contemporary technologies like Python, SAS, R, and SQL/NoSQL database, Data Scientists perform in-depth statistical analysis.

The role of Data Scientist might sound like that of Data Analyst, but, in fact, they are different.

Difference between a Data Scientist and a Data Analyst

  • Data scientist predicts future based on past patterns. Whereas, a Data Analyst curates meaningful insights from data.
  • Data scientist’s work involves “estimation” (or prediction) unknown facts; while an analyst investigates the known facts.
  • Data Analyst’s job is more geared towards businesses. Data Scientists’ work is integral to innovations and technological advances.

Why Machine Learning is So Important for a Data Scientist?

In a near future, process automation will superimpose most of the human-work in manufacturing. To match human capabilities, devices need to be intelligent and Machine Learning is at the core of AI.

Data Scientists must understand Machine Learning for quality predictions and estimations. This can help machines to take right decisions and smarter actions in real time with zero human intervention.

Machine Learning is transforming how data mining and interpretation work. It has replaced traditional statistical techniques with the more accurate automatic sets of generic methods. 

Hence it is imperative for Data Scientists to acquire skills at Machine Learning.

4 Must Have Skills Required to Become a Machine Learning Expert

To become an expert at Machine Learning every Data Scientists must have the following 4 skills.

  1. Thorough knowledge and expertise in computer fundamentals. For example, computer organization, system architecture and layers, and application software.
  2. Knowledge of probability is very important because Data Scientists’ work involves a lot of estimation. Analyzing statistics is another area that they need to focus on.
  3. Data modeling for analyzing various data objects and how they interact with each other.
  4. Programming skills and a sound knowledge of programming languages like python and R. A quest for learning new database languages like NoSQL apart from traditional SQL and Oracle.

Conclusion

Data is the new oil.

IBM predicts that the global demand for Data Scientists will rise 28% by 2020. Finance, Insurance, Professional services and IT sectors will cover 59% of the Data Science and Analytics job demand.

In the coming future, Machine Learning is going to be one of the best solutions to analyze high volumes of data. Therefore, Data Scientists must acquire an in-depth knowledge of Machine Learning to boost their productivity.   

This article is contributed to Mantra Labs by Jenny Hayat. Jenny is an established blogger and content writer for business, career, education, investment, money-making ideas and more.

Cancel

Knowledge thats worth delivered in your inbox

Machines That Make Up Facts? Stopping AI Hallucinations with Reliable Systems

There was a time when people truly believed that humans only used 10% of their brains, so much so that it fueled Hollywood Movies and self-help personas promising untapped genius. The truth? Neuroscientists have long debunked this myth, proving that nearly all parts of our brain are active, even when we’re at rest. Now, imagine AI doing the same, providing information that is untrue, except unlike us, it doesn’t have a moment of self-doubt. That’s the bizarre and sometimes dangerous world of AI hallucinations.

AI hallucinations aren’t just funny errors; they’re a real and growing issue in AI-generated misinformation. So why do they happen, and how do we build reliable AI systems that don’t confidently mislead us? Let’s dive in.

Why Do AI Hallucinations Happen?

AI hallucinations happen when models generate errors due to incomplete, biased, or conflicting data. Other reasons include:

  • Human oversight: AI mirrors human biases and errors in training data, leading to AI’s false information
  • Lack of reasoning: Unlike humans, AI doesn’t “think” critically—it generates predictions based on patterns.

But beyond these, what if AI is too creative for its own good?

‘Creativity Gone Rogue’: When AI’s Imagination Runs Wild

AI doesn’t dream, but sometimes it gets ‘too creative’—spinning plausible-sounding stories that are basically AI-generated fake data with zero factual basis. Take the case of Meta’s Galactica, an AI model designed to generate scientific papers. It confidently fabricated entire studies with fake references, leading Meta to shut it down in three days.

This raises the question: Should AI be designed to be ‘less creative’ when AI trustworthiness matters?

The Overconfidence Problem

Ever heard the phrase, “Be confident, but not overconfident”? AI definitely hasn’t.

AI hallucinations happen because AI lacks self-doubt. When it doesn’t know something, it doesn’t hesitate—it just generates the most statistically probable answer. In one bizarre case, ChatGPT falsely accused a law professor of sexual harassment and even cited fake legal documents as proof.

Take the now-infamous case of Google’s Bard, which confidently claimed that the James Webb Space Telescope took the first-ever image of an exoplanet, a factually incorrect statement that went viral before Google had to step in and correct it.

There are more such multiple instances where AI hallucinations have led to Human hallucinations. Here are a few instances we faced.

When we tried the prompt of “Padmavaat according to the description of Malik Muhammad Jayasi-the writer ”

When we tried the prompt of “monkey to man evolution”

Now, if this is making you question your AI’s ability to get things right, then you should probably start looking have a checklist to check if your AI is reliable.

Before diving into solutions. Question your AI. If it can do these, maybe these will solve a bit of issues:

  • Can AI recognize its own mistakes?
  • What would “self-awareness” look like in AI without consciousness?
  • Are there techniques to make AI second-guess itself?
  • Can AI “consult an expert” before answering?

That might be just a checklist, but here are the strategies that make AI more reliable:

Strategies for Building Reliable AI

1. Neurosymbolic AI

It is a hybrid approach combining symbolic reasoning (logical rules) with deep learning to improve factual accuracy. IBM is pioneering this approach to build trustworthy AI systems that reason more like humans. For example, RAAPID’s solutions utilize this approach to transform clinical data into compliant, profitable risk adjustment, improving contextual understanding and reducing misdiagnoses.

2. Human-in-the-Loop Verification

Instead of random checks, AI can be trained to request human validation in critical areas. Companies like OpenAI and Google DeepMind are implementing real-time feedback loops where AI flags uncertain responses for review. A notable AI hallucination prevention use case is in medical AI, where human radiologists verify AI-detected anomalies in scans, improving diagnostic accuracy.

3. Truth Scoring Mechanism

IBM’s FactSheets AI assigns credibility scores to AI-generated content, ensuring more fact-based responses. This approach is already being used in financial risk assessment models, where AI outputs are ranked by reliability before human analysts review them.

4. AI ‘Memory’ for Context Awareness

Retrieval-Augmented Generation (RAG) allows AI to access verified sources before responding. This method is already being used by platforms like Bing AI, which cites sources instead of generating standalone answers. In legal tech, RAG-based models ensure AI-generated contracts reference actual legal precedents, reducing AI accuracy problems.

5. Red Teaming & Adversarial Testing

Companies like OpenAI and Google regularly use “red teaming”—pitting AI against expert testers who try to break its logic and expose weaknesses. This helps fine-tune AI models before public release. A practical AI reliability example is cybersecurity AI, where red teams simulate hacking attempts to uncover vulnerabilities before systems go live 

The Future: AI That Knows When to Say, “I Don’t Know”

One of the most important steps toward reliable AI is training models to recognize uncertainty. Instead of making up answers, AI should be able to respond with “I’m unsure” or direct users to validated sources. Google DeepMind’s Socratic AI model is experimenting with ways to embed self-doubt into AI.

Conclusion:

AI hallucinations aren’t just quirky mistakes—they’re a major roadblock in creating trustworthy AI systems. By blending techniques like neurosymbolic AI, human-in-the-loop verification, and retrieval-augmented generation, we can push AI toward greater accuracy and reliability.

But here’s the big question: Should AI always strive to be 100% factual, or does some level of ‘creative hallucination’ have its place? After all, some of the best innovations come from thinking outside the box—even if that box is built from AI-generated data and machine learning algorithms.

At Mantra Labs, we specialize in data-driven AI solutions designed to minimize hallucinations and maximize trust. Whether you’re developing AI-powered products or enhancing decision-making with machine learning, our expertise ensures your models provide accurate information, making life easier for humans

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot