Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Basics of load testing in Enterprise Applications using J-Meter

5 minutes read

We need to test websites and applications for performance standards before delivering them to the client. The performance or benchmark testing is an ongoing function of software quality assurance that extends throughout the life cycle of the project. To build standards into the architecture of a system — the stability and response time of an application is extensively tested by applying a load or stress to the system.

Essentially, ‘load’ means the number of users using the application while ‘stability’ refers to the system’s ability to withstand the load created by the intended number of users. ‘Response time’ indicates the time taken to send a request, run the program and receive a response from a server.

Load testing on applications can be a challenging ordeal if a performance testing strategy is not predetermined. Testing tasks require multifaceted skill-sets — from writing test scripts, monitoring and analyzing test results to tweaking custom codes and scripts, and developing automated test scenarios for the actual testing.

So, is load testing on applications really necessary?

Quality testing ensures that the system is reliable, built for capacity and scalable. To achieve this, the involved stakeholders decide the budget considering its business impact.

Now, this raises a question — how do we predict traffic based on past trends? and how can we make the system more efficient to handle traffic without any dropouts? Also, if and when we hit peak loads, then how are we going to address the additional volume? For this, it is crucial to outline the performance testing strategy beforehand.

5 Key Benefits of Performance Testing

  1. It identifies the issues at the early stage before they become too costly to resolve (for example, exposing bugs that do not surface in cursory testing, such as memory management bugs, memory leaks, buffer overflows, etc.).
  2. Performance testing reduces development cycles, produces better quality and more scalable code.
  3. It prevents revenue and credibility loss due to poor web site performance.
  4. To enable intelligent planning for future scaling.
  5. It ensures that the system meets performance expectations (response time, throughput, etc.) under-designed levels of load.

Organizations don’t prefer manual testing these days because it is expensive and requires human resources and hardware. It is also quite complex to coordinate and synchronize multiple testers. Also, repeatability is limited in manual testing.

To find the stability and response time of each API, we can test different scenarios by varying the load at different time intervals on the application. We can then automate the application by using any performance testing tool.

Performance Testing Tools

There are a bunch of different tools available for testers such as Open Source testing Tools — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis; Commercial testing tools— LoadRunner, Silk Performer, Qengine, Empirix e-Load.

Among these, the most commonly used tool is Apache J-Meter. It is a 100% Java desktop application with a graphical interface that uses the Swing graphical API. It can, therefore, run on any environment/workstation that accepts Java virtual machine, for example, Windows, Linux, Mac, etc.

We can automate testing the application by integrating the ‘selenium scripts’ in the J-Meter tool. (The software that can perform load tests, performance-functional tests, regression tests, etc. on different technologies.)

[Related: A Complete Guide to Regression Testing in Agile]

If the project is large in scope and the number of users keeps increasing day-by-day then the server’s load will be greater. In such situations, Performance testing is useful to identify at what point the application will crash. To find the number of errors and warnings in the code, we use the J-Meter tool.

How J-Meter Works

J-Meter simulates a group of users sending requests to a target server and returns statistics that show the performance/functionality of the target server/application via tables, graphs, etc.

The following figure illustrates how J-Meter works:

How J-Meter works - Load Testing on applications

The J-Meter performance testing tool can find the performance of any application (no matter whatever the language used to build the project).

First, it requires a test plan which describes a series of steps that the J-Meter will execute when run. A complete test plan will consist of one or more thread groups, samplers, logic controllers, listeners, timers, assertions and configuration elements.

The ‘thread’ group elements are the beginning of any test plan. Thread group element controls the number of threads J-Meter will use during the test run. We can also control the following via thread group: setting the number of threads, setting the ramp-up time and setting the loop count. The number of threads implies the number of users to the server application, while the ramp-up period defines the time taken by J-Meter to get all the threads running. Loop count identifies the number of times to execute the test.

After creating the ‘thread’ group, we need to define the number of users, iterations and ramp-up time (or usage time). We can create virtual servers depending on the number of users defined in the thread group and start performing the action based on the parameters defined. Internally J-Meter will record all the results like response code, response time, throughput, latency, etc. It produces the results in the form of graphs, trees and tables.

J-Meter has two types of controllers: Samplers and Logic controllers. Samplers allow the J-Meter to send specific requests to a server, while Logic controllers control the order of processing of samplers in a thread. They can change the order of requests coming from any of their child elements. Listeners are then used to view the results of samplers in the form of reporting tables, graphs, trees or simple text in some log files.

Please remember, always do performance testing by changing one parameter at a time. This way, you’ll be able to monitor response and throughput metrics and correct discrepancies accordingly. The real purpose of load testing is to ensure that the application or site is functional for businesses to deliver real value to their users — so test practically, and think like a real user.

If you’ve any queries or doubts, please feel free to write to hello@mantralabsglobal.com.

About the author: Syed Khalid Hussain is a Software Engineer-QA at Mantra Labs Pvt Ltd. He is a pro at different QA testing methodologies and is integral to the organization’s testing services.

Load Testing on Applications FAQs

What is the purpose of load testing?

Load testing is done to ensure that the application is capable of withstanding the load created by the intended number of users (web traffic).

Which tool is used for load testing?

There are open source and commercial tools available for load testing. 
Open Source Tools are — Open STA Diesel Test, TestMaker, Grinder, LoadSim, J-Meter, Rubis. Commercial testing tools are — LoadRunner, Silk Performer, Qengine, Empirix e-Load.

How load testing is done?

Load testing is done using test scripts, monitoring and analyzing test results and developing automated test scenarios.

Check out these articles to catch the latest trends in mobile apps:

  1. 7 Important Points To Consider Before Developing A Mobile App
  2. The Clash of Clans: Kotlin Vs. Flutter
  3. Google for India September event 2019 key highlights
  4. Learn Ionic Framework From Scratch in Less Than 15 Minutes!
  5. AI in Mobile Development
  6. 10 Reasons to Learn Swift Programming Language
Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot