Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

How can Artificial Intelligence settle Insurance Claims in five minutes?

Originally published on medium.com

If you’ve ever been in the position of having to file an insurance claim, you would agree that it isn’t the most pleasant experience that you’ve likely ever encountered.

In fact, according to J.D. Power’s 2018 Insurance Customer Satisfaction Studymanaging time expectations is the key driver of satisfaction — meaning, a prompt claim settlement is still the best advertisable punch line for insurance firms. Time-to-settle satisfaction ratings were found to be 1.9 points lower even when the time frame was relatively short and insurers still missed customer timing expectations.

So what should an established insurance company do, to be at par with the customer’s desires of modern service standards? The question becomes even more pertinent when the insurance sector is still lagging behind consumer internet giants like Amazon, Uber who are creating newer levels of customer expectation. Lemonade, MetroMile and others are already taking significant market share away from traditional insurance carriers by facilitating experiences that were previously unheard of in the insurance trade.

Today, Lemonade contends that with AI, it has settled a claim in just 3 seconds! While a new era of claims settlement benchmarks are being set with AI, the industry is shifting their attitude towards embracing the real potential of intelligent technologies that can shave-off valuable time and money from the firm’s bottom-line.

How AI integrates across the Insurance Claims Life Cycle

For this entire process to materialize — from the customer filling out the claim information online, to receiving the amount in a bank account within a short amount of time, and have the entire process be completely automated without any interference, bias, or the whims of human prejudice.

How does this come about? How does a system understand large volumes of information that requires subjective, human-like interpretation?

The answer lies within the cognitive abilities of AI systems.

For some insurers the thought that readily comes to mind is — Surely, it must be quite difficult to achieve this in real-world scenarios. Well, the answer is — NO, it isn’t!

Indeed, there are numerous examples of real-world cases that have already been implemented or are presently in use. To understand how these systems work, we need to break down the entire process into multiple steps, and see how each step is using AI and then passing over the control to the next step for further processing.

How It Works
For the AI-enabled health insurance claims cycle, there are a few distinct steps in the entire process.

Analysis and abstraction

The following information is first extracted from medical documents (diagnosis reports, admission & discharge summaries etc.)

  1. Cause, manifestation, location, severity, encounter, and type of injury or disease — along with & related ICD Codes for injury or disease in textual format.
  2. CPT Codes — procedures or service performed on a patient, are also extracted.

There are in essence two different systems. The first one (described above) processes the information that is presented to it, while the other looks from the angle of genuineness of the information. The latter is the fraud detection system (Fraud, Abuse & Wastage Analyzer) that goes into critical examination of claim documents from the fraud, abuse and wastage perspective.

Fraud, Abuse & Wastage Analyzer

Insurance companies audit about 10% of their total claims. Out of which around 4–5% are found to be illegitimate. But the problem is that the results of these audit findings are available much after the claim has been settled, following which recovering back the money already paid for unsustainable claims is not that easy.

This means that companies are losing big sums on fraudulent claims. But is there a way by which insurers can sniff out fraud in real time while the claim is under processing?

With Cognitive AI technologies available today, this is achievable. All you need is a system that analyses hundreds and thousands of combinations of symptoms, diagnoses and comes up with possible suggested treatments. The suggestions are based on the learnings from past instances of cases that has been exposed to the AI system.

The suggested treatments’ tentative cost — based on the location, hospital, etc., is compared with the actual cost of the treatment. If the difference suggests an anomaly, then the case is flagged for review.

Automated processing of medical invoices

Now if your Fraud Analyzer finds no problem with a claim, how can you expedite its processing? Processing requires gathering information from all medical invoices, categorizing them into benefit buckets, and then finalizing the amount allowed under each head. Advanced systems can automate this entire process, ruling out manual intervention in most of these cases.

Recent AI systems have the capability of extracting line items from a scanned medical invoice image. This is achieved through a multistep process, outlined below.

  1. Localizing text on the medical invoice. This gives the bounding boxes around all texts.
  2. Running all localized boxes against a Scene Text Decoder trained using a LSTM and a Sequence Neural network.
  3. Applying Levenshtein Distance Correction for better accuracy.
  4. Mapping each line item against an insurer specific category.

Each line item is iterated over and looked up against the policy limits to get its upper limit. Each line item amount is aggregated to finally get the final settlement amount.

If the final settlement amount is within the limits set for straight through processing and no flags are raised by the Fraud, Abuse & Wastage Analyzer, then the claim is sent to billing for processing.

Moving Ahead With AI Enabled Claims
Today, AI transforms the insurance claims cycle with greater accuracy, speed and productivity, at a fraction of the cost (in the long run) — while delivering enhanced decision making capabilities and a superior experience in customer service. While, in the past, these innovations were overlooked and undervalued for the impact they produced — the insurers of today need to identify the proper use cases that match their organization’s needs and the significant value they can deliver to the customers of tomorrow. The cardinal rule is to — start small through feasible pilots, that will first bring lost dividends back into the organization.


Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot