Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Hello World but in VR

By :

The mission was simple- create some interactive objects and also a futuristic environment. I stood at the crossroads, uncertain where to begin, so the first thing that I did was open YouTube and type-” how to build your first game in VR”. After watching a couple of videos, one thing was definite-” Oculus “. Oculus is the hardware used for most VR applications. So, I went ahead and placed an order for the Oculus which took around 15 days to get delivered. The unboxing felt like I had the key to the future, and now what? I ended up playing some games to understand how VR works and also just playing games.


Imagination part I

Then, I got a call from my manager-” Vignesh, Where is my metaverse?” 

The burgeoning weight of expectations compelled me to set aside gaming and delve into development. So, hopped onto my laptop which at times was a little specced out. Nevertheless, I started to do some research on how to build VR apps on YouTube, Oculus development page, Unity development page, and a few others. The information was quite overwhelming at the beginning and most of it bounced over my head. Took some time to understand the terminologies used in game engines, effective workflows, and finally how to import 3D models from Blender. I made some test Models in Blender with some free source files “sketchfab.com” because that was the fastest way to run a trial in Unity and Blender. Once I got the free resources, I tried to export it to Unity but for some reason, it was not working. So you guessed it right, YouTube became my refuge, and YES I found the solution. The feeling of successfully importing the 3D file to Unity was like I had accomplished 70% of the task but in reality, it was just 10%. There were a lot more things to figure out, like UV unwrapping, texturing, baking, emission materials, and baking animation which I still need to discover. A month’s time had already passed and I had made no major progress just as I grappled with this, a message from my manager appeared:“ Vignesh, when can I see the metaverse??”



Imagination part II

This is when I realized I needed to learn faster and work more efficiently and by chance I ended up on this amazing YouTube channel called Dilmer Valecillos where he teaches and explains VR development fundamentals and also shares the source code for some tutorials. That’s when I came across Oculus Interaction SDK. SDK (Software development kit) is a framework which apps and software are built upon. Thankfully Oculus development site provides their SDK which helps to develop games for Oculus. Having all the necessary knowledge and resources for development, I began to create 3D models in Blender, import them to Unity, and use the interaction SDK to make the models interactable. 

ALL was fine until I had to install the game into Oculus. The game would simply not install on Oculus. So I did some research and found that I had to change some settings in Unity for it to install.

Finally, I donned the Oculus on eagerly waiting for the game to start, when the loading screen disappeared I could see the environment created in VR but I wasn’t able to move or interact with the objects. This was a huge setback after spending nearly 4 months learning different tools and software needed for the development.


OK! Reality

This setback ushered in introspection and I realized my focus was not on learning the software extensively so, made a plan with the guidance of my manager to focus on one tool at a time and to understand it at the fundamental level. The tools were Blender and Unity, I previously had some experience in 3D so Blender was a bit easier to learn compared to Unity which has coding and I don’t know how to code. The fear of coding was hindering my learning curve in Unity but I figured not everything requires coding. Also, my fellow colleague was kind enough to help me out with coding. We decided that I would be focusing on creating 3D environments and some basic interaction on Unity and Rabi would do the coding. So, we set sail and within a few weeks we were ready to finally show the prototype to our manager. We tried our best to get it as expected but it was far from that and it needed more creative inputs, quality renders, and intuitive interactions. These were a few key pieces of feedback we got from presenting the prototype to the manager.

These experiences will undoubtedly shape my growth as a VR developer and provide valuable insights that extend beyond the world of virtual reality. I hope it resonates with many aspiring people who venture into the world of virtual reality.

P.S. The Project Metaverse is still ongoing.

About the Author: Vignesh is a creative visual designer and quirky art director! With a heart full of innovation, he crafts designs that tell vibrant stories and leave lasting impressions. Beyond design, he’s an adrenaline junkie seeking excitement in life.

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot