According to a report by McKinsey, AI technologies could potentially deliver up to $1 trillion of additional value each year. This highlights the massive potential of Generative AI in revolutionizing the banking industry. It offers solutions to some of the industry’s key challenges such as enhancing customer service, bolstering security, making accurate risk assessments, and providing a personalized banking experience.
Generative AI, as the name suggests, is a form of AI that focuses on generating new instances of data that resemble the input data it was trained on. From creating realistic human faces to composing music, generative AI’s capabilities are truly vast. However, its potential is most palpable in sectors like banking, where constant innovation and adaptability are the keys to maintaining a competitive edge.
Gen AI is more than just ChatGPT, it has wide applications across industries.
Generative AI is driving a paradigm shift in the way customer service is being delivered in the banking sector. Banks, including global leaders like Bank of America and Wells Fargo, have been using generative AI to develop advanced chatbots and virtual assistants. These AI-driven systems are trained on extensive datasets of customer interactions and are capable of generating personalized and accurate responses to customer queries.
Consider a customer asking, “What is the interest rate on a 30-year fixed mortgage?” The AI chatbot, with its ability to access the latest data from various lenders, can provide an accurate response. Furthermore, it can analyze the customer’s financial situation and provide personalized recommendations, such as potential eligibility for lower interest rates through refinancing.
The use of generative AI in customer service has two primary benefits:
To highlight this, let’s take a look at a real-world example: Mantra Labs’ work with Viteos, a leading provider of investment solutions. Viteos’ financial asset management platform provides end-to-end middle and back-office administration for top-tier hedge funds, private equity, private debt, and other alternative asset managers. However, it faced several operational bottlenecks.
Mantra Labs, leveraging its expertise in UI/UX, ETL, and Machine Learning, refined the platform’s user workflows for more robust capabilities and smarter gains. An automated client onboarding solution was integrated, and a machine learning model was developed to analyze historical transactions, trades, and financial data from clients, accounting systems, and banks. This resulted in improved operational efficiency and a significant reduction in bottlenecks.
With the banking sector increasingly moving towards digital platforms, the importance of robust security measures cannot be overstated. Generative AI has emerged as a powerful tool to enhance security measures. Banks are using AI to detect and mitigate potential threats, providing an additional layer of security.
For instance, Capital One has been leveraging the power of generative AI to detect patterns indicative of fraudulent activity among the millions of transactions that occur daily. This real-time analysis and detection of potential fraud have been instrumental in enhancing the bank’s security measures.
Consider the workflow of this process:
Risk assessment is a crucial aspect of banking operations. Traditionally, this has been a complex process involving the analysis of a customer’s financial history, current financial status, and market trends. However, generative AI has brought about a revolution in this area as well. By processing vast volumes of data, AI can make accurate predictions about the likelihood of a loan default. This helps banks make informed decisions and manage their risk more effectively.
Institutions like ING and the State Bank of India (SBI) have successfully integrated generative AI into their risk assessment processes. For instance, SBI’s AI system, aptly named “RiskEye,” analyzes a wealth of historical data and market trends to predict loan default risks. This valuable information aids in sound lending decisions, helping the bank avoid potential losses.
Another transformative application of generative AI in banking is in the area of personalization. By analyzing a customer’s past transactions, preferences, and behavior, AI systems can generate personalized banking solutions.
Consider JPMorgan Chase’s use of generative AI. Their AI system uses customer data to create a personalized financial plan that suits the customer’s individual needs. This has not only improved customer satisfaction but also increased customer loyalty.
While generative AI offers immense potential, it also brings certain risks. These include:
Banks need to move swiftly to leverage AI opportunities, but they must also tread with caution to consider the legal, ethical, and reputational risks.
It’s clear that generative AI is not just another technology; it is setting new standards in banking operations worldwide. As we continue to advance in AI, its role in banking will only become more profound. It’s not just about the technology itself, but how it’s reshaping the entire banking landscape. As we move forward, the focus should be on constant innovation and adaptation to leverage the full potential of generative AI.
Want to read more on Generative AI?
Check our latest blog:
In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to…
As healthcare becomes more patient-centric, the demand for efficient and personalized care continues to grow.…
Imagine waking up to an assistant who has already planned your day—rescheduled your meetings to…
When we hear million-dollar AI mistakes, the first thought is: What could it be? Was…
Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it…
Ever wondered what life would be like if the Sun took a day off? Picture…
This website uses cookies.