Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(32)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(150)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Generative AI in Banking: A Technological Revolution

According to a report by McKinsey, AI technologies could potentially deliver up to $1 trillion of additional value each year. This highlights the massive potential of Generative AI in revolutionizing the banking industry. It offers solutions to some of the industry’s key challenges such as enhancing customer service, bolstering security, making accurate risk assessments, and providing a personalized banking experience.

Generative AI, as the name suggests, is a form of AI that focuses on generating new instances of data that resemble the input data it was trained on. From creating realistic human faces to composing music, generative AI’s capabilities are truly vast. However, its potential is most palpable in sectors like banking, where constant innovation and adaptability are the keys to maintaining a competitive edge.

Gen AI is more than just ChatGPT, it has wide applications across industries.

Improving CX with AI-powered Customer Support Features

Generative AI is driving a paradigm shift in the way customer service is being delivered in the banking sector. Banks, including global leaders like Bank of America and Wells Fargo, have been using generative AI to develop advanced chatbots and virtual assistants. These AI-driven systems are trained on extensive datasets of customer interactions and are capable of generating personalized and accurate responses to customer queries.

Consider a customer asking, “What is the interest rate on a 30-year fixed mortgage?” The AI chatbot, with its ability to access the latest data from various lenders, can provide an accurate response. Furthermore, it can analyze the customer’s financial situation and provide personalized recommendations, such as potential eligibility for lower interest rates through refinancing.

The use of generative AI in customer service has two primary benefits:

  • Enhanced Customer Experience: With the AI system providing accurate and personalized responses, customers have a better and more satisfying experience.
  • Increased Operational Efficiency: AI handles routine queries, freeing customer service representatives to focus on more complex issues. This not only reduces the burden on human resources but also increases operational efficiency.

To highlight this, let’s take a look at a real-world example: Mantra Labs’ work with Viteos, a leading provider of investment solutions. Viteos’ financial asset management platform provides end-to-end middle and back-office administration for top-tier hedge funds, private equity, private debt, and other alternative asset managers. However, it faced several operational bottlenecks.

Mantra Labs, leveraging its expertise in UI/UX, ETL, and Machine Learning, refined the platform’s user workflows for more robust capabilities and smarter gains. An automated client onboarding solution was integrated, and a machine learning model was developed to analyze historical transactions, trades, and financial data from clients, accounting systems, and banks. This resulted in improved operational efficiency and a significant reduction in bottlenecks.

Using AI to Enhance Security

With the banking sector increasingly moving towards digital platforms, the importance of robust security measures cannot be overstated. Generative AI has emerged as a powerful tool to enhance security measures. Banks are using AI to detect and mitigate potential threats, providing an additional layer of security.

For instance, Capital One has been leveraging the power of generative AI to detect patterns indicative of fraudulent activity among the millions of transactions that occur daily. This real-time analysis and detection of potential fraud have been instrumental in enhancing the bank’s security measures.

Consider the workflow of this process:

  1. The AI system is trained on vast datasets of transactions, learning the intricate patterns of normal behavior.
  2. Once the system has been trained, it can generate new instances of normal behavior.
  3. Any transaction that deviates from these generated instances is flagged as potential fraud.
  4. This proactive approach to security has significantly reduced instances of fraud, thereby protecting the interests of the bank and its customers.

Refining Risk Assessment with Generative AIefining 

Risk assessment is a crucial aspect of banking operations. Traditionally, this has been a complex process involving the analysis of a customer’s financial history, current financial status, and market trends. However, generative AI has brought about a revolution in this area as well. By processing vast volumes of data, AI can make accurate predictions about the likelihood of a loan default. This helps banks make informed decisions and manage their risk more effectively.

Institutions like ING and the State Bank of India (SBI) have successfully integrated generative AI into their risk assessment processes. For instance, SBI’s AI system, aptly named “RiskEye,” analyzes a wealth of historical data and market trends to predict loan default risks. This valuable information aids in sound lending decisions, helping the bank avoid potential losses.

Personalizing the Banking Experience

Another transformative application of generative AI in banking is in the area of personalization. By analyzing a customer’s past transactions, preferences, and behavior, AI systems can generate personalized banking solutions.

Consider JPMorgan Chase’s use of generative AI. Their AI system uses customer data to create a personalized financial plan that suits the customer’s individual needs. This has not only improved customer satisfaction but also increased customer loyalty.

Challenges Still Remain

While generative AI offers immense potential, it also brings certain risks. These include:

  • Model hallucinations: This is when AI models produce authoritative-sounding answers to questions, even when they don’t have enough information to provide an accurate response.
  • “Black box” thinking: This refers to the difficulty in interpreting the output of the AI models or understanding how they produced it.
  • Biased training data: Like any AI solution, the quality of the source data is crucial. Any biases present in the training data can be reflected in the output.

Banks need to move swiftly to leverage AI opportunities, but they must also tread with caution to consider the legal, ethical, and reputational risks.

It’s clear that generative AI is not just another technology; it is setting new standards in banking operations worldwide. As we continue to advance in AI, its role in banking will only become more profound. It’s not just about the technology itself, but how it’s reshaping the entire banking landscape. As we move forward, the focus should be on constant innovation and adaptation to leverage the full potential of generative AI.

Want to read more on Generative AI?

Check our latest blog:

The Role of Generative AI in Healthcare

Cancel

Knowledge thats worth delivered in your inbox

The Future-Ready Factory: The Power of Predictive Analytics in Manufacturing

In 1989, a missing $0.50 bolt led to the mid-air explosion of United Airlines Flight 232. The smallest oversight in manufacturing can set off a chain reaction of failures. Now, imagine a factory floor where thousands of components must function flawlessly—what happens if one critical part is about to fail but goes unnoticed? Predictive analytics in manufacturing ensures these unseen risks don’t turn into catastrophic failures by providing foresight into potential breakdowns, supply chain risk analytics, and demand fluctuations—allowing manufacturers to act before issues escalate into costly problems.

Industrial predictive analytics involves using data analysis and machine learning in manufacturing to identify patterns and predict future events related to production processes. By combining historical data, machine learning, and statistical models, manufacturers can derive valuable insights that help them take proactive measures before problems arise.

Beyond just improving efficiency, predictive maintenance in manufacturing is the foundation of proactive risk management, helping manufacturers prevent costly downtime, safety hazards, and supply chain disruptions. By leveraging vast amounts of data, predictive analytics enables manufacturers to anticipate machine failures, optimize production schedules, and enhance overall operational resilience.

But here’s the catch, models that predict failures today might not be necessarily effective tomorrow. And that’s where the real challenge begins.

Why Predictive Analytics Models Need Retraining?

Predictive analytics in manufacturing relies on historical data and machine learning to foresee potential failures. However, manufacturing environments are dynamic, machines degrade, processes evolve, supply chains shift, and external forces such as weather and geopolitics play a bigger role than ever before.

Without continuous model retraining, predictive models lose their accuracy. A recent study found that 91% of data-driven manufacturing models degrade over time due to data drift, requiring periodic updates to remain effective. Manufacturers relying on outdated models risk making decisions based on obsolete insights, potentially leading to catastrophic failures.

The key is in retraining models with the right data, data that reflects not just what has happened but what could happen next. This is where integrating external data sources becomes crucial.

Is Integrating External Data Sources Crucial?

Traditional smart manufacturing solutions primarily analyze in-house data: machine performance metrics, maintenance logs, and operational statistics. While valuable, this approach is limited. The real breakthroughs happen when manufacturers incorporate external data sources into their predictive models:

  • Weather Patterns: Extreme weather conditions have caused billions in manufacturing risk management losses. For example, the 2021 Texas power crisis disrupted semiconductor production globally. By integrating weather data, manufacturers can anticipate environmental impacts and adjust operations accordingly.
  • Market Trends: Consumer demand fluctuations impact inventory and supply chains. By leveraging market data, manufacturers can avoid overproduction or stock shortages, optimizing costs and efficiency.
  • Geopolitical Insights: Trade wars, regulatory shifts, and regional conflicts directly impact supply chains. Supply chain risk analytics combined with geopolitical intelligence helps manufacturers foresee disruptions and diversify sourcing strategies proactively.

One such instance is how Mantra Labs helped a telecom company optimize its network by integrating both external and internal data sources. By leveraging external data such as radio site conditions and traffic patterns along with internal performance reports, the company was able to predict future traffic growth and ensure seamless network performance.

The Role of Edge Computing and Real-Time AI

Having the right data is one thing; acting on it in real-time is another. Edge computing in manufacturing processes, data at the source, within the factory floor, eliminating delays and enabling instant decision-making. This is particularly critical for:

  • Hazardous Material Monitoring: Factories dealing with volatile chemicals can detect leaks instantly, preventing disasters.
  • Supply Chain Optimization: Real-time AI can reroute shipments based on live geopolitical updates, avoiding costly delays.
  • Energy Efficiency: Smart grids can dynamically adjust power consumption based on market demand, reducing waste.

Conclusion:

As crucial as predictive analytics is in manufacturing, its true power lies in continuous evolution. A model that predicts failures today might be outdated tomorrow. To stay ahead, manufacturers must adopt a dynamic approach—refining predictive models, integrating external intelligence, and leveraging real-time AI to anticipate and prevent risks before they escalate.

The future of smart manufacturing solutions isn’t just about using predictive analytics—it’s about continuously evolving it. The real question isn’t whether predictive models can help, but whether manufacturers are adapting fast enough to outpace risks in an unpredictable world.

At Mantra Labs, we specialize in building intelligent predictive models that help businesses optimize operations and mitigate risks effectively. From enhancing efficiency to driving innovation, our solutions empower manufacturers to stay ahead of uncertainties. Ready to future-proof your factory? Let’s talk.

In the manufacturing industry, predictive analytics plays an important role, providing predictions on what will happen and how to do things. But then the question is, are these predictions accurate? And if they are, how accurate are these predictions? Does it consider all the factors, or is it obsolete?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot