Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Generative AI in Banking: A Technological Revolution

According to a report by McKinsey, AI technologies could potentially deliver up to $1 trillion of additional value each year. This highlights the massive potential of Generative AI in revolutionizing the banking industry. It offers solutions to some of the industry’s key challenges such as enhancing customer service, bolstering security, making accurate risk assessments, and providing a personalized banking experience.

Generative AI, as the name suggests, is a form of AI that focuses on generating new instances of data that resemble the input data it was trained on. From creating realistic human faces to composing music, generative AI’s capabilities are truly vast. However, its potential is most palpable in sectors like banking, where constant innovation and adaptability are the keys to maintaining a competitive edge.

Gen AI is more than just ChatGPT, it has wide applications across industries.

Improving CX with AI-powered Customer Support Features

Generative AI is driving a paradigm shift in the way customer service is being delivered in the banking sector. Banks, including global leaders like Bank of America and Wells Fargo, have been using generative AI to develop advanced chatbots and virtual assistants. These AI-driven systems are trained on extensive datasets of customer interactions and are capable of generating personalized and accurate responses to customer queries.

Consider a customer asking, “What is the interest rate on a 30-year fixed mortgage?” The AI chatbot, with its ability to access the latest data from various lenders, can provide an accurate response. Furthermore, it can analyze the customer’s financial situation and provide personalized recommendations, such as potential eligibility for lower interest rates through refinancing.

The use of generative AI in customer service has two primary benefits:

  • Enhanced Customer Experience: With the AI system providing accurate and personalized responses, customers have a better and more satisfying experience.
  • Increased Operational Efficiency: AI handles routine queries, freeing customer service representatives to focus on more complex issues. This not only reduces the burden on human resources but also increases operational efficiency.

To highlight this, let’s take a look at a real-world example: Mantra Labs’ work with Viteos, a leading provider of investment solutions. Viteos’ financial asset management platform provides end-to-end middle and back-office administration for top-tier hedge funds, private equity, private debt, and other alternative asset managers. However, it faced several operational bottlenecks.

Mantra Labs, leveraging its expertise in UI/UX, ETL, and Machine Learning, refined the platform’s user workflows for more robust capabilities and smarter gains. An automated client onboarding solution was integrated, and a machine learning model was developed to analyze historical transactions, trades, and financial data from clients, accounting systems, and banks. This resulted in improved operational efficiency and a significant reduction in bottlenecks.

Using AI to Enhance Security

With the banking sector increasingly moving towards digital platforms, the importance of robust security measures cannot be overstated. Generative AI has emerged as a powerful tool to enhance security measures. Banks are using AI to detect and mitigate potential threats, providing an additional layer of security.

For instance, Capital One has been leveraging the power of generative AI to detect patterns indicative of fraudulent activity among the millions of transactions that occur daily. This real-time analysis and detection of potential fraud have been instrumental in enhancing the bank’s security measures.

Consider the workflow of this process:

  1. The AI system is trained on vast datasets of transactions, learning the intricate patterns of normal behavior.
  2. Once the system has been trained, it can generate new instances of normal behavior.
  3. Any transaction that deviates from these generated instances is flagged as potential fraud.
  4. This proactive approach to security has significantly reduced instances of fraud, thereby protecting the interests of the bank and its customers.

Refining Risk Assessment with Generative AIefining 

Risk assessment is a crucial aspect of banking operations. Traditionally, this has been a complex process involving the analysis of a customer’s financial history, current financial status, and market trends. However, generative AI has brought about a revolution in this area as well. By processing vast volumes of data, AI can make accurate predictions about the likelihood of a loan default. This helps banks make informed decisions and manage their risk more effectively.

Institutions like ING and the State Bank of India (SBI) have successfully integrated generative AI into their risk assessment processes. For instance, SBI’s AI system, aptly named “RiskEye,” analyzes a wealth of historical data and market trends to predict loan default risks. This valuable information aids in sound lending decisions, helping the bank avoid potential losses.

Personalizing the Banking Experience

Another transformative application of generative AI in banking is in the area of personalization. By analyzing a customer’s past transactions, preferences, and behavior, AI systems can generate personalized banking solutions.

Consider JPMorgan Chase’s use of generative AI. Their AI system uses customer data to create a personalized financial plan that suits the customer’s individual needs. This has not only improved customer satisfaction but also increased customer loyalty.

Challenges Still Remain

While generative AI offers immense potential, it also brings certain risks. These include:

  • Model hallucinations: This is when AI models produce authoritative-sounding answers to questions, even when they don’t have enough information to provide an accurate response.
  • “Black box” thinking: This refers to the difficulty in interpreting the output of the AI models or understanding how they produced it.
  • Biased training data: Like any AI solution, the quality of the source data is crucial. Any biases present in the training data can be reflected in the output.

Banks need to move swiftly to leverage AI opportunities, but they must also tread with caution to consider the legal, ethical, and reputational risks.

It’s clear that generative AI is not just another technology; it is setting new standards in banking operations worldwide. As we continue to advance in AI, its role in banking will only become more profound. It’s not just about the technology itself, but how it’s reshaping the entire banking landscape. As we move forward, the focus should be on constant innovation and adaptation to leverage the full potential of generative AI.

Want to read more on Generative AI?

Check our latest blog:

The Role of Generative AI in Healthcare

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot