Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Exploring Capabilities of OpenAI’s ChatGPT Code Interpreter

Imagine having a personal data scientist at your fingertips, capable of interpreting raw data, creating intricate visuals, and even handling video editing. Sounds like a dream? Well, OpenAI has turned this dream into reality with the introduction of their Code Interpreter for ChatGPT.

What is ChatGPT’s Code Interpreter?

The Code Interpreter is a groundbreaking plugin developed by OpenAI. The primary objective of this feature is to amplify the abilities of ChatGPT, moving it beyond its initial role as a text-generating AI.

By enabling the Code Interpreter, users have the opportunity to transform ChatGPT into an adaptable tool capable of running Python code, processing data, and much more. The chatbot can even edit videos and images, bringing a sense of versatility that has been largely absent in the realm of chatbots.

But how does the Code Interpreter work? Let’s delve deeper.

Unpacking the Code Interpreter: How does it work?

At its core, the Code Interpreter transforms ChatGPT into an instantly accessible data scientist. The plugin empowers the chatbot to run code, create charts, analyze data, perform mathematical operations, and edit files.

When a user inputs any unformatted data, for example from a PDF, ChatGPT can analyze it and create well-structured output. Be it generating data in table layouts or restructuring the format and running models, the Code Interpreter aids ChatGPT in providing the best possible outcomes.

Further enhancing its capabilities, the Code Interpreter can efficiently convert data from wide to long formats and vice versa, a feature that saves users substantial time and effort.

This plugin’s usefulness extends beyond typical data handling. It opens up a world of creativity, like the instance where a user uploaded a CSV file of every lighthouse location in the US and ChatGPT created a GIF map with twinkling lights atop each location.

(Code Interpreter can help you do data analysis in seconds!)

Given this wide array of applications, the Code Interpreter brings a significant advantage to ChatGPT Plus subscribers. But how can one access and make the most of this new feature?

How to Use ChatGPT’s Code Interpreter?

For gaining access to the Code Interpreter, one must be a ChatGPT Plus subscriber. Here are the steps to navigate the process:

  1. Log in to ChatGPT on the OpenAI website.
  2. Select Settings.
  3. In the bottom-left of the window, next to your login name, select the three-dot menu.
  4. Select the Beta features menu and toggle on Plug-ins. To enable internet access for ChatGPT, toggle on Web browsing. A Chrome extension can also be used for the same.
  5. Close the menu and find the small drop-down menu under the language model selector. Select it.
  6. Select Plugin Store.
  7. Select All plug-ins.
  8. Find Code Interpreter in the list and select Install.

What Can ChatGPT’s Code Interpreter Do?

From performing intricate data analysis to converting file formats, the Code Interpreter pushes the boundary of what ChatGPT can accomplish. A few examples of its potential uses include:

  • Data Analysis: The Code Interpreter can delve into raw data, analyze it, and provide a comprehensive understanding of it. For instance, a Twitter user analyzed a 300-hour Spotify playlist of his favorite songs using ChatGPT. The chatbot not only provided visualization but also helped with data retrieval and explained how to use Spotify API.

(You can ask it to summarize a huge data set, get insights from it, and make changes as well)

  • File Conversion: With the Code Interpreter, ChatGPT can transform data from one format to another effortlessly. A user uploaded a GIF and asked ChatGPT to convert it into an MP4 with Zoom.
  • File Handling: The Code Interpreter comes equipped with extraordinary file-handling capabilities. It can upload and download files, extract colors from an image to create palette.png, and automatically compress large images to manage memory shortage issues.

Code Interpreter: Industry Use Cases

The introduction of Code Interpreter can herald a new era of tech innovation. In industries like retail, for example, companies can leverage ChatGPT to analyze customer behavior data, improving their marketing strategies and customer service. Similarly, in healthcare, researchers could use it to sift through vast amounts of medical data to derive useful patterns and insights.

In the realm of education, the Code Interpreter could be used to create interactive learning tools, helping students grasp complex concepts easily. This could lead to a more inclusive and adaptive learning environment. Tech companies can leverage the same to accelerate building products, gain efficiencies, etc. Companies like Mantra Labs have already started exploring such possibilities and experimenting with them to create tools and solutions that cater to industrial needs.

In media and entertainment, from analyzing viewer preferences to helping with video editing and creating customized content, the possibilities are vast.

Looking at the Potential

Looking back at some already accomplished tasks, it’s clear that the Code Interpreter could streamline many processes. For instance, consider the task of converting large volumes of data from one format to another. In the past, this required dedicated software or skilled personnel. Now, this could be accomplished with a simple command to the ChatGPT Code Interpreter.

Another example is the analysis of large data sets. Take the Twitter user who analyzed his extensive Spotify playlist. Without the Code Interpreter, this task would have been arduous, requiring manual sorting through hundreds of songs and extracting relevant data. The Code Interpreter simplified this process, performing it in a matter of seconds.

In conclusion, the introduction of ChatGPT’s Code Interpreter represents a significant leap in AI development, one that holds immense potential. As we continue to refine and expand this tool, the Code Interpreter could transform industries, change our approaches to problem-solving, and redefine the boundaries of what AI can achieve.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot