Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Essential Web Optimization Techniques

It is essential to optimize a website for speed and user experience in the fast-paced, competitive digital world of today. 

Websites that take too long to load may turn away potential customers, resulting in lower conversion rates and less revenue. The use of web optimization techniques is essential in tackling these issues, enhancing website functionality, cutting down on load times, and ensuring an excellent user experience. In the last two blogs, we discussed why web optimization is a must for businesses and also some essential checklists that can help firms understand how easy is the website/app to use for their customers. Well, in this blog post, we’ll focus on essential web optimization techniques that can help organizations improve website performance, draw in and keep users engaged. 

  • Optimizing Images and Multimedia: Pages with loads of images and multimedia content typically take longer to load. That is why techniques like image compression, lazy loading, image resolution, image tag optimization, and picture tags in images might aid in enhancing the efficiency of a website.

Image Compression 

File sizes can be significantly reduced by optimizing images and adopting modern image formats like SVG and compressing them without losing quality. For instance, if we have two identical photos, one is 900 kb in size and the other is 340 kb. The second image will then put less strain on the server and conserve bandwidth.

Lazy Loading 

Lazy loading techniques can be used to load images and multimedia content only when they are about to enter the user’s viewport, saving bandwidth and accelerating the initial page load.

For instance, if a user must scroll down a web page to see an image, you can show a placeholder and lazy load the complete image only when the user reaches its location.

Image Resolution

The file size increases with increasing resolution. Using high-resolution photos online slows down page load time. Similarly to this, if a visitor uses a mobile device to access the website, bandwidth will probably be more constrained, and large graphics will probably take longer to load. In the case of high-resolution images, the thumbnail is used to load the complete image only when the user requests it.

Image Tag Optimization 

This approach involves uploading the same image with different properties as required for different devices. For example, smaller size images for mobile devices. 

Including all types of images required for mobile, web, etc in a single code will add lines in code and increase loading time. It’s better to always include both small and large-size images, different formats, etc, and ask the system to select the appropriate one based on the device type – mobile, web, or tablet.

This reduces loading time and the images displayed will be suitable to the device, hence enhancing user experience.

  • Minifying and Compressing Assets: Minification is the process of removing unnecessary elements such as whitespace, comments, and formatting from HTML, CSS, and JavaScript files, reducing their file size. Compression, on the other hand, involves using techniques to reduce the size of the files during transmission. Because reduced file sizes result in faster downloads and better page rendering, minifying, and compressing files can drastically reduce load times.
  • Content Delivery Network (CDN): CDNs help lower latency and minimize the distance between the user and the server, resulting in faster content delivery, by distributing the website’s assets over numerous servers. Additionally, CDNs also manage traffic peaks, enhancing website accessibility and performance.
Content Delivery Network (CDN)
Overall representation of CDN

Steps followed in CDN(Content Delivery Unit)

-Data to be displayed in the user interface of the website is entered in CMS (similar to WordPress) and gets copied to the internal page (like a prototype of the original website user interface) so that we can have a view of how it’ll be displayed to the end user.

-When someone tries to make changes on the Internal page directly, it’ll be accepted only if the same input has been fed on CMS and acknowledged

-Through a syncing process, also called ‘Caching’, it’ll be displayed on the real-time user interface from the internal page, thus providing us a chance to take a look at how it’s delivered to the user and check the viewing experience.

  • Responsive and Mobile-Friendly Design: In an era where mobile devices dominate web browsing, responsive design is a must-have for optimal user experience. Websites that are responsive automatically change their layout and usability to fit different screen sizes and resolutions on different devices, leading to higher engagement and customer satisfaction.
  • Script Optimization : Also called ‘code cleanup’, this involves checking the code periodically / with functionality changes and updating it then and there. This will help us eliminate redundant code and improve the LCP (Loading Capacity of Page)
  • Implementing Microservice: Microservice refers to a piece of code that will influence the behavior of individual elements when input is received. Related dependency code will be added with the element (react js, angular, etc).

This is used as an alternative to the conventional approach where the code of an entire page will load if we skip following the above-mentioned section-wise approach.

Conclusion:

Techniques for web optimization are essential for boosting website performance, improving user experience, and gaining an advantage in the digital marketplace.  By implementing the above-mentioned techniques, organizations can ensure that the website loads quickly engages users effectively, and drives business growth. 

Check out our latest case study:

Unlocking the Power of Web Optimization

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot