Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Pushing the Envelope on ICR Accuracy in Hand-written Forms

5 minutes, 6 seconds read

The need for and consequently the number of solutions for reading hand-written forms in an automated manner has been on a rise for as long as one could remember. Almost all businesses to varying degrees utilize paper-based forms that are filled by customers by hand. Most if not all of these businesses convert this handwritten information into the digital format. Depending on the technological sophistication or the size of the business this digitization might be done manually by one or more data entry specialists or through an automated solution. 

It’s easy to see how the manual route may not be an ideal solution for medium or large-sized business. Some of the apparent drawbacks of manual document processing are:

  1. The cost of having data entry specialists quickly add up as more documents need to be digitized necessitating adding more resources.
  2. Manual data entry is a slow process.
  3. Manual data entry is error-prone and requires a quality inspection which is costly and not fail-proof.

Many businesses have realized this and have transitioned to some form of a partially or fully automated solution to this problem. However, it’s not all rosy for these businesses either. The problems these businesses face is primarily related to the accuracy of the current solutions in the market. 

Shortcomings of Existing Hand-written Document Processing Solutions

The industry average for ICR (Intelligent Character Recognition) accuracy at the character level is about 70% and it will drop significantly if measured at word level which is what matters at the end. Such automation may allow for reducing the number of data entry personnel but with such a low level of accuracy, there will be a need for increased quality check resources, which are often more expensive than data entry resources hence diluting the cost-benefit of automation. Moreover, since the quality check is a slower process than data entry, this kind of automation doesn’t even address the speed problem.

Some of the reasons that result in a low level of accuracy among existing document processing solutions are:

  • Poor form design
  • User input not in line with the format
  • Noisy images
  • Misaligned documents
  • Low-quality scanning of documents
  • Spelling mistakes by the user
  • Overwriting/corrections by user

While we may not have control over some of the above factors such as form design and user input, we can definitely improvise the data extraction models to account for the other factors such as image noise, misalignments, spelling mistakes etc.

Our ICR Solution

The Document Parser solution in FlowMagic provides an intuitive user interface where data can be extracted from any standard form in three easy steps:

Step 1:   The user annotates the form (this is a one-time exercise for each new form) using an easy and intuitive UI. During annotation, each input field can optionally be labelled as mandatory. The user can specify the datatype for each field as alphabets, numeric or checkbox and also set the context for the field e.g. Name, PAN, City, Car Make, Date etc. Once done, the saved template can be used repeatedly for reading forms of the same type as long as there are no changes in the form design. In case of a change, the saved template can be easily modified. 

Step 2:   The user uploads one or more forms and chooses the corresponding template (from previous annotations). The system automatically extracts data from the forms.

Step 3:  The system exports the output in CSV, XML or JSON as desired by the user. If any field was marked as mandatory during annotation, the system also outputs a list of all mandatory fields that are blank.

Salient features of ICR Document Parser

  1. The standard form being annotated can be any number of pages. The input form need not have the same number of pages. If there is a mismatch between the pages in the input form and the template, the system does a matching and runs the data extraction on matching pages only. This also means that the input form need not be sorted correctly.
  2. The system can read handwritten as well as printed forms.
  3. The system corrects for minor misalignments during scanning of documents or documents scanned in the wrong orientation.
  4. The system has inbuilt dictionaries for various contexts such as Name, Cities, States, Countries, PAN, Profession, Marital Status, Relationship, Amount, Car Make, Date, Gender.
  5. The various data types supported by the system are alphabets, numeric, alphanumeric, checkboxes and special characters.
  6. The system corrects user errors or scanning issues by performing data type and dictionary checks (see examples below).
  7. The system checks for mandatory fields to make sure the form is completely filled.

Examples of Data Read/Corrections Made by an ICR

Benefits of ICR

Flexibility – you can annotate a wide variety of forms with complex inputs and data formats using the multiple data types and contexts built into the system.

Speed – Both annotation and data extraction are very user-friendly and fast. The system can extract data from a five-page form in under 30 seconds.

Scalability – The system is highly extensible and once set up for one type of form can easily be scaled for multiple forms or to process documents in bulk of the same format.

Accuracy – The character level accuracy of our model is over 90%. Word level accuracy depends on the form design and quality but in general, varies between 75% and 85%.

Workflow

ICR (Intelligent Character Recognizer) workflow

No matter what solution you use, you can always benefit from these best practices for form design to improve the accuracy of your ICR:

  1. Have all instructions in bold at the top of the form.
  2. Instruct the user to write clearly in block letters as the form will be processed by a machine.
  3. Provide examples of how to enter data wherever there is a scope for confusion.
  4. Instead of providing a free form space for data entry, it provides a clearly marked space with a specific location to enter each character.
  5. The overall space should be large enough to contain the requisite data to avoid user writing outside of this space.
  6. Have enough separation between the space for two fields to avoid overlap.

To learn more about how FlowMagic can improve the accuracy and speed of your document digitization/Intelligent Character Recognition (ICR) or discuss your broader AI goals, please get in touch with us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot