Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Pushing the Envelope on ICR Accuracy in Hand-written Forms

5 minutes, 6 seconds read

The need for and consequently the number of solutions for reading hand-written forms in an automated manner has been on a rise for as long as one could remember. Almost all businesses to varying degrees utilize paper-based forms that are filled by customers by hand. Most if not all of these businesses convert this handwritten information into the digital format. Depending on the technological sophistication or the size of the business this digitization might be done manually by one or more data entry specialists or through an automated solution. 

It’s easy to see how the manual route may not be an ideal solution for medium or large-sized business. Some of the apparent drawbacks of manual document processing are:

  1. The cost of having data entry specialists quickly add up as more documents need to be digitized necessitating adding more resources.
  2. Manual data entry is a slow process.
  3. Manual data entry is error-prone and requires a quality inspection which is costly and not fail-proof.

Many businesses have realized this and have transitioned to some form of a partially or fully automated solution to this problem. However, it’s not all rosy for these businesses either. The problems these businesses face is primarily related to the accuracy of the current solutions in the market. 

Shortcomings of Existing Hand-written Document Processing Solutions

The industry average for ICR (Intelligent Character Recognition) accuracy at the character level is about 70% and it will drop significantly if measured at word level which is what matters at the end. Such automation may allow for reducing the number of data entry personnel but with such a low level of accuracy, there will be a need for increased quality check resources, which are often more expensive than data entry resources hence diluting the cost-benefit of automation. Moreover, since the quality check is a slower process than data entry, this kind of automation doesn’t even address the speed problem.

Some of the reasons that result in a low level of accuracy among existing document processing solutions are:

  • Poor form design
  • User input not in line with the format
  • Noisy images
  • Misaligned documents
  • Low-quality scanning of documents
  • Spelling mistakes by the user
  • Overwriting/corrections by user

While we may not have control over some of the above factors such as form design and user input, we can definitely improvise the data extraction models to account for the other factors such as image noise, misalignments, spelling mistakes etc.

Our ICR Solution

The Document Parser solution in FlowMagic provides an intuitive user interface where data can be extracted from any standard form in three easy steps:

Step 1:   The user annotates the form (this is a one-time exercise for each new form) using an easy and intuitive UI. During annotation, each input field can optionally be labelled as mandatory. The user can specify the datatype for each field as alphabets, numeric or checkbox and also set the context for the field e.g. Name, PAN, City, Car Make, Date etc. Once done, the saved template can be used repeatedly for reading forms of the same type as long as there are no changes in the form design. In case of a change, the saved template can be easily modified. 

Step 2:   The user uploads one or more forms and chooses the corresponding template (from previous annotations). The system automatically extracts data from the forms.

Step 3:  The system exports the output in CSV, XML or JSON as desired by the user. If any field was marked as mandatory during annotation, the system also outputs a list of all mandatory fields that are blank.

Salient features of ICR Document Parser

  1. The standard form being annotated can be any number of pages. The input form need not have the same number of pages. If there is a mismatch between the pages in the input form and the template, the system does a matching and runs the data extraction on matching pages only. This also means that the input form need not be sorted correctly.
  2. The system can read handwritten as well as printed forms.
  3. The system corrects for minor misalignments during scanning of documents or documents scanned in the wrong orientation.
  4. The system has inbuilt dictionaries for various contexts such as Name, Cities, States, Countries, PAN, Profession, Marital Status, Relationship, Amount, Car Make, Date, Gender.
  5. The various data types supported by the system are alphabets, numeric, alphanumeric, checkboxes and special characters.
  6. The system corrects user errors or scanning issues by performing data type and dictionary checks (see examples below).
  7. The system checks for mandatory fields to make sure the form is completely filled.

Examples of Data Read/Corrections Made by an ICR

Benefits of ICR

Flexibility – you can annotate a wide variety of forms with complex inputs and data formats using the multiple data types and contexts built into the system.

Speed – Both annotation and data extraction are very user-friendly and fast. The system can extract data from a five-page form in under 30 seconds.

Scalability – The system is highly extensible and once set up for one type of form can easily be scaled for multiple forms or to process documents in bulk of the same format.

Accuracy – The character level accuracy of our model is over 90%. Word level accuracy depends on the form design and quality but in general, varies between 75% and 85%.

Workflow

ICR (Intelligent Character Recognizer) workflow

No matter what solution you use, you can always benefit from these best practices for form design to improve the accuracy of your ICR:

  1. Have all instructions in bold at the top of the form.
  2. Instruct the user to write clearly in block letters as the form will be processed by a machine.
  3. Provide examples of how to enter data wherever there is a scope for confusion.
  4. Instead of providing a free form space for data entry, it provides a clearly marked space with a specific location to enter each character.
  5. The overall space should be large enough to contain the requisite data to avoid user writing outside of this space.
  6. Have enough separation between the space for two fields to avoid overlap.

To learn more about how FlowMagic can improve the accuracy and speed of your document digitization/Intelligent Character Recognition (ICR) or discuss your broader AI goals, please get in touch with us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot