Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

5 Deep Learning Use Cases for the Insurance Industry

4 minutes, 9 seconds read

In 2010, with the launch of the Image Net Competition, a vast dataset of about 14 million labeled images was made open-source to inspire the development of cutting-edge image classifiers. This was when Deep Learning technology got its a real breakthrough and since then there’s been no looking back for advancements in this field.

Different industries are actively using Deep Learning for object detection, features tagging, image analysis, sentiment analysis, and processing data at extremely high speeds. The bigger benefit that differentiates Deep Learning from other AI and ML technologies is the ability to train vast amounts of unstructured data in near real-time. Organizations with a strong focus on data are already about 1.5 times more likely to invest in Deep Learning for actionable insights — Forrester Predicts.

What makes Deep Learning Technology so sought after?

Let’s take a look at 5 Deep Learning use cases from an insurance perspective.

5 Noteworthy Deep Learning Use Cases in Insurance

Deep Learning (DL) is a branch of Machine Learning, which is based on artificial neural networks. DL techniques are specifically useful for determining patterns in large unstructured data. It is highly beneficial for assessing damages during an accident, identifying anomalies in billing, etc. that can eventually help in fraud detection and better customer experiences.

The insurance industry can leverage Deep Learning technology to improve service, automation, and scale of operations. 

1. Property analysis

Typically, insurers analyze a property only once before quoting an insurance premium. However, a customer may remodel the property, for instance, install a swimming pool. 

Under such instances, Insurers can proactively modify the insurance coverage with the help of deep learning technology. In fact, with DL technology, Insurers can help their customers with predictive maintenance, fault analysis, and real-time support. 

For example, Enodo provides underwriting for multifamily properties. It allows users to analyze historical rent, concession data, and market values. Such data-driven tools are also a great aid for insurers.

2. Personalized offers

Insurers are seeking different ways to enhance the customer experience. Deep Learning can vividly improve interaction experiences at different customer touch-points. Take for instance — marketing outreach. Through personalized recommendations and dynamic remarketing strategies, insurers can achieve better conversions. McKinsey states that personalization can reduce customer acquisition costs by up to 50%

At the core of these strategies lies Deep Learning technology. DL technology can make logical classifications of unstructured data through unsupervised learning. We’ve already seen product recommendations based on our own preferences, browsing/search patterns, and peers’ interests. The same applies to the insurance industry, especially when insurers endeavor profits through bite-size and on-demand insurance products.  

3. Pricing/Actuarial analysis

Actuarial analysis and evaluation are both time-consuming and error-prone processes. Insurers can considerably improve policy pricing through automated reasoning. Deep Learning techniques combine statistics, finance, business, and case-based reasoning and can assist actuaries in better risk assessments. Accenture reports — Insurers are leveraging machine learning for underwriting in P&C (56%) and life (39%) insurance sectors

  1. Explainable AI (XAI) is capable of adopting and implementing AI across all capacities of the actuarial profession. 
  2. Pattern recognition from historical data can help assess the risk and understand the market better.
  3. Deep Learning can help in pragmatic actuarial solutions to make effective decisions on large actuarial data sets.

4. Deep Learning Use Cases in Fraud Detection

In Norway alone in 2019, there were 827 proven fraud cases, which could have caused a loss of over €11 million to insurers.

Insurance fraud usually occurs in the form of claims. A claimant can fake the identity, duplicate claims, overstate repair costs, and submit false medical receipts and bills. Mostly because of disconnected information sources, Insurers fall victim to fraudulent activities from customers. Now, here’s the challenge. How to unify different data sources, which, to date, even include offline receipts and manually scanned documents. 

Deep Learning can help in fraud detection by-

  • Finding hidden/implicit correlations in data.
  • Facial recognition, sentiment analysis on submitted claims application.
  • Supervised learning to train the fraud detection models using labeled historical data.
  • Eliminating the time lag in the verification of documents, which raises the potential for data breaching.

5. Claims

Deep Learning incorporates two-fold benefits to insurers in terms of claims. One — with a connected information ecosystem, it helps insurers with faster claims settlement (thus, customer experience as well). Two, deep learning predictive models can equip insurers with a better understanding of claims cost. 

For example, Tokio Marine — the largest P&C insurance group in Japan uses a cloud-based document processing system to process handwritten claims from the time of the first intimation. Many insurers are looking forward to end-to-end claims processing systems with deep learning and other AI capabilities. 

The Crux

Today, Deep Learning technology is able to mimic an infant’s brain. The research is on for developing new neural network architectures (e.g. Siamese Network, OpenAI’s GPT-2 Model, etc.) that will be capable of performing complex functionalities of a mature human brain. Deep Learning technology, in the near future, will be leading the development of cognition-based insurance systems.

Also read — The Cognitive Cloud Insurer is Next!

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot