Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

5 Deep Learning Use Cases for the Insurance Industry

4 minutes, 9 seconds read

In 2010, with the launch of the Image Net Competition, a vast dataset of about 14 million labeled images was made open-source to inspire the development of cutting-edge image classifiers. This was when Deep Learning technology got its a real breakthrough and since then there’s been no looking back for advancements in this field.

Different industries are actively using Deep Learning for object detection, features tagging, image analysis, sentiment analysis, and processing data at extremely high speeds. The bigger benefit that differentiates Deep Learning from other AI and ML technologies is the ability to train vast amounts of unstructured data in near real-time. Organizations with a strong focus on data are already about 1.5 times more likely to invest in Deep Learning for actionable insights — Forrester Predicts.

What makes Deep Learning Technology so sought after?

Let’s take a look at 5 Deep Learning use cases from an insurance perspective.

5 Noteworthy Deep Learning Use Cases in Insurance

Deep Learning (DL) is a branch of Machine Learning, which is based on artificial neural networks. DL techniques are specifically useful for determining patterns in large unstructured data. It is highly beneficial for assessing damages during an accident, identifying anomalies in billing, etc. that can eventually help in fraud detection and better customer experiences.

The insurance industry can leverage Deep Learning technology to improve service, automation, and scale of operations. 

1. Property analysis

Typically, insurers analyze a property only once before quoting an insurance premium. However, a customer may remodel the property, for instance, install a swimming pool. 

Under such instances, Insurers can proactively modify the insurance coverage with the help of deep learning technology. In fact, with DL technology, Insurers can help their customers with predictive maintenance, fault analysis, and real-time support. 

For example, Enodo provides underwriting for multifamily properties. It allows users to analyze historical rent, concession data, and market values. Such data-driven tools are also a great aid for insurers.

2. Personalized offers

Insurers are seeking different ways to enhance the customer experience. Deep Learning can vividly improve interaction experiences at different customer touch-points. Take for instance — marketing outreach. Through personalized recommendations and dynamic remarketing strategies, insurers can achieve better conversions. McKinsey states that personalization can reduce customer acquisition costs by up to 50%

At the core of these strategies lies Deep Learning technology. DL technology can make logical classifications of unstructured data through unsupervised learning. We’ve already seen product recommendations based on our own preferences, browsing/search patterns, and peers’ interests. The same applies to the insurance industry, especially when insurers endeavor profits through bite-size and on-demand insurance products.  

3. Pricing/Actuarial analysis

Actuarial analysis and evaluation are both time-consuming and error-prone processes. Insurers can considerably improve policy pricing through automated reasoning. Deep Learning techniques combine statistics, finance, business, and case-based reasoning and can assist actuaries in better risk assessments. Accenture reports — Insurers are leveraging machine learning for underwriting in P&C (56%) and life (39%) insurance sectors

  1. Explainable AI (XAI) is capable of adopting and implementing AI across all capacities of the actuarial profession. 
  2. Pattern recognition from historical data can help assess the risk and understand the market better.
  3. Deep Learning can help in pragmatic actuarial solutions to make effective decisions on large actuarial data sets.

4. Deep Learning Use Cases in Fraud Detection

In Norway alone in 2019, there were 827 proven fraud cases, which could have caused a loss of over €11 million to insurers.

Insurance fraud usually occurs in the form of claims. A claimant can fake the identity, duplicate claims, overstate repair costs, and submit false medical receipts and bills. Mostly because of disconnected information sources, Insurers fall victim to fraudulent activities from customers. Now, here’s the challenge. How to unify different data sources, which, to date, even include offline receipts and manually scanned documents. 

Deep Learning can help in fraud detection by-

  • Finding hidden/implicit correlations in data.
  • Facial recognition, sentiment analysis on submitted claims application.
  • Supervised learning to train the fraud detection models using labeled historical data.
  • Eliminating the time lag in the verification of documents, which raises the potential for data breaching.

5. Claims

Deep Learning incorporates two-fold benefits to insurers in terms of claims. One — with a connected information ecosystem, it helps insurers with faster claims settlement (thus, customer experience as well). Two, deep learning predictive models can equip insurers with a better understanding of claims cost. 

For example, Tokio Marine — the largest P&C insurance group in Japan uses a cloud-based document processing system to process handwritten claims from the time of the first intimation. Many insurers are looking forward to end-to-end claims processing systems with deep learning and other AI capabilities. 

The Crux

Today, Deep Learning technology is able to mimic an infant’s brain. The research is on for developing new neural network architectures (e.g. Siamese Network, OpenAI’s GPT-2 Model, etc.) that will be capable of performing complex functionalities of a mature human brain. Deep Learning technology, in the near future, will be leading the development of cognition-based insurance systems.

Also read — The Cognitive Cloud Insurer is Next!

Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot