Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(152)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Data Sharing: The Healthcare Superpower You Didn’t Know Was Needed

Imagine a world where doctors can instantly access a patient’s entire medical history, from birth to the present, with just a few clicks. A world where researchers can rapidly analyze vast digital health records to discover groundbreaking new treatments. This seamless access to information isn’t just a dream—it’s the potential reality of effective data sharing in healthcare.

By breaking down the barriers that currently isolate crucial healthcare data, we can transform patient care, streamline operations, and accelerate medical advancements. The future of healthcare lies in the power of connected information, ensuring that every decision made is informed, accurate, and timely.

Barriers that are hindering Data Sharing in Healthcare

1. Data Silos: Healthcare providers often store patient information in isolated systems that do not communicate with each other. This fragmentation leads to a lack of coordination, duplicated tests, and gaps in patient care.

2. Interoperability Issues: Different healthcare organizations use various electronic health record (EHR) systems like Epic electronic health record, charm electronic health records and Cerner electronic health record, which are not always compatible. This lack of standardization makes it difficult to share data seamlessly across platforms.

3. Privacy and Security Concerns: The healthcare industry handles sensitive patient information. The risk of data breaches and unauthorized access creates reluctance among institutions to share data freely.

4. Regulatory and Compliance Barriers: Strict regulations like HIPAA (Health Insurance Portability and Accountability Act) in the US and GDPR (General Data Protection Regulation) in Europe mandate stringent data protection measures. While these regulations are essential for protecting patient privacy, they can also hinder data sharing.

5. Resistance to Change: The healthcare industry can be slow to adopt new technologies, and some providers may be resistant to changing their workflows to incorporate healthcare data analyst insights and data-sharing solutions data-sharing solutions.

Technological Innovations Transforming Data Sharing in Healthcare

By employing innovative tools and strategies, the industry can close the gap between isolated data systems and foster a more connected, efficient, and secure environment for patient care. Here’s a look at the key technological techniques making this possible:

  1. Interoperability Standards: Technologies like Fast Healthcare Interoperability Resources (FHIR) and Health Level 7 (HL7) are setting the foundation for seamless data exchange between different healthcare systems. These standards ensure that patient information can be shared across platforms without compatibility issues, eliminating data silos and enabling better coordination of care.
  2. Blockchain Technology:  According to a Deloitte report, 55% of healthcare executives consider blockchain a top-five strategic priority for enhancing data integrity and security.Blockchain offers a decentralized, secure way to store and share electronic health records. Its tamper-proof nature ensures that data remains unaltered and trustworthy, which significantly boosts confidence among healthcare providers when sharing sensitive information. This technology is crucial for maintaining the integrity and security of health records. 
  3. Cloud Computing: Cloud-based platforms allow healthcare providers to store and access health records remotely, ensuring that patient information is available to authorized users at any time, from anywhere. This flexibility improves collaboration between different healthcare entities and helps streamline patient care, especially in multi-location healthcare systems.
  4. Artificial Intelligence (AI) and Machine Learning: AI-driven tools are revolutionizing the way healthcare data is processed and shared. These technologies can standardize vast amounts of data, identify patterns, and enable predictive analytics. By automating data sharing and analysis, AI and machine learning reduce the burden on healthcare providers and improve decision-making processes.
  5. Telemedicine and Internet of Things (IoT): The rise of telemedicine and IoT devices has expanded the sources of digital health records. Wearable devices, remote monitoring systems, and telehealth platforms generate valuable patient information that can be shared in real-time with healthcare providers. This continuous flow of data allows for timely interventions and personalized care, bridging the gap between patients and providers.
  6. Health Information Exchanges (HIEs): HIEs facilitate the secure sharing of patient information among different healthcare providers. By connecting various systems, HIEs ensure that patient data is accessible where and when it’s needed, enhancing continuity of care across different providers and locations.
  7. Data Encryption and Anonymization: To address privacy concerns, data encryption and anonymization techniques are used to protect sensitive patient information. These methods ensure that data can be shared securely without compromising patient privacy, balancing the need for data access with stringent privacy regulations.
  8. Standardization of Data Formats: The adoption of standardized data formats, such as FHIR, allows for consistent and seamless data exchange across different platforms. This standardization reduces interoperability issues and ensures that healthcare providers can access and utilize patient data more efficiently.
  9. Collaboration and Partnerships: Collaboration between healthcare providers, technology companies, and regulatory bodies is crucial for overcoming data-sharing challenges. Initiatives like the CommonWell Health Alliance and the Sequoia Project are creating nationwide networks for data sharing, demonstrating the power of partnerships in advancing healthcare technology.
  10. Patient-Centered Approaches: Empowering patients to take control of their own health data is another technique used to bridge the gap. Through patient portals and apps, individuals can access their health records and share them with healthcare providers as needed. This not only improves patient engagement but also ensures that providers have the information they need to deliver optimal care.

Conclusion: The Path Forward

Bridging the data-sharing gap in healthcare is essential for improving patient outcomes, enhancing public health, and advancing medical research. While significant challenges remain, the combination of technological innovations and collaborative efforts is paving the way for a more integrated and efficient healthcare system.

As we continue to adopt and refine these technological techniques with the vision of a fully connected healthcare ecosystem, where data flows freely and securely between stakeholders and becomes increasingly attainable. By embracing these innovations and fostering partnerships, we are setting the stage for a future where healthcare is not only more accessible and personalized but also more proactive in addressing the complex challenges of tomorrow. The path forward is clear: by closing the data-sharing gap, we can unlock the full potential of healthcare and ensure better outcomes for all.

Cancel

Knowledge thats worth delivered in your inbox

Machines That Make Up Facts? Stopping AI Hallucinations with Reliable Systems

There was a time when people truly believed that humans only used 10% of their brains, so much so that it fueled Hollywood Movies and self-help personas promising untapped genius. The truth? Neuroscientists have long debunked this myth, proving that nearly all parts of our brain are active, even when we’re at rest. Now, imagine AI doing the same, providing information that is untrue, except unlike us, it doesn’t have a moment of self-doubt. That’s the bizarre and sometimes dangerous world of AI hallucinations.

AI hallucinations aren’t just funny errors; they’re a real and growing issue in AI-generated misinformation. So why do they happen, and how do we build reliable AI systems that don’t confidently mislead us? Let’s dive in.

Why Do AI Hallucinations Happen?

AI hallucinations happen when models generate errors due to incomplete, biased, or conflicting data. Other reasons include:

  • Human oversight: AI mirrors human biases and errors in training data, leading to AI’s false information
  • Lack of reasoning: Unlike humans, AI doesn’t “think” critically—it generates predictions based on patterns.

But beyond these, what if AI is too creative for its own good?

‘Creativity Gone Rogue’: When AI’s Imagination Runs Wild

AI doesn’t dream, but sometimes it gets ‘too creative’—spinning plausible-sounding stories that are basically AI-generated fake data with zero factual basis. Take the case of Meta’s Galactica, an AI model designed to generate scientific papers. It confidently fabricated entire studies with fake references, leading Meta to shut it down in three days.

This raises the question: Should AI be designed to be ‘less creative’ when AI trustworthiness matters?

The Overconfidence Problem

Ever heard the phrase, “Be confident, but not overconfident”? AI definitely hasn’t.

AI hallucinations happen because AI lacks self-doubt. When it doesn’t know something, it doesn’t hesitate—it just generates the most statistically probable answer. In one bizarre case, ChatGPT falsely accused a law professor of sexual harassment and even cited fake legal documents as proof.

Take the now-infamous case of Google’s Bard, which confidently claimed that the James Webb Space Telescope took the first-ever image of an exoplanet, a factually incorrect statement that went viral before Google had to step in and correct it.

There are more such multiple instances where AI hallucinations have led to Human hallucinations. Here are a few instances we faced.

When we tried the prompt of “Padmavaat according to the description of Malik Muhammad Jayasi-the writer ”

When we tried the prompt of “monkey to man evolution”

Now, if this is making you question your AI’s ability to get things right, then you should probably start looking have a checklist to check if your AI is reliable.

Before diving into solutions. Question your AI. If it can do these, maybe these will solve a bit of issues:

  • Can AI recognize its own mistakes?
  • What would “self-awareness” look like in AI without consciousness?
  • Are there techniques to make AI second-guess itself?
  • Can AI “consult an expert” before answering?

That might be just a checklist, but here are the strategies that make AI more reliable:

Strategies for Building Reliable AI

1. Neurosymbolic AI

It is a hybrid approach combining symbolic reasoning (logical rules) with deep learning to improve factual accuracy. IBM is pioneering this approach to build trustworthy AI systems that reason more like humans. For example, RAAPID’s solutions utilize this approach to transform clinical data into compliant, profitable risk adjustment, improving contextual understanding and reducing misdiagnoses.

2. Human-in-the-Loop Verification

Instead of random checks, AI can be trained to request human validation in critical areas. Companies like OpenAI and Google DeepMind are implementing real-time feedback loops where AI flags uncertain responses for review. A notable AI hallucination prevention use case is in medical AI, where human radiologists verify AI-detected anomalies in scans, improving diagnostic accuracy.

3. Truth Scoring Mechanism

IBM’s FactSheets AI assigns credibility scores to AI-generated content, ensuring more fact-based responses. This approach is already being used in financial risk assessment models, where AI outputs are ranked by reliability before human analysts review them.

4. AI ‘Memory’ for Context Awareness

Retrieval-Augmented Generation (RAG) allows AI to access verified sources before responding. This method is already being used by platforms like Bing AI, which cites sources instead of generating standalone answers. In legal tech, RAG-based models ensure AI-generated contracts reference actual legal precedents, reducing AI accuracy problems.

5. Red Teaming & Adversarial Testing

Companies like OpenAI and Google regularly use “red teaming”—pitting AI against expert testers who try to break its logic and expose weaknesses. This helps fine-tune AI models before public release. A practical AI reliability example is cybersecurity AI, where red teams simulate hacking attempts to uncover vulnerabilities before systems go live 

The Future: AI That Knows When to Say, “I Don’t Know”

One of the most important steps toward reliable AI is training models to recognize uncertainty. Instead of making up answers, AI should be able to respond with “I’m unsure” or direct users to validated sources. Google DeepMind’s Socratic AI model is experimenting with ways to embed self-doubt into AI.

Conclusion:

AI hallucinations aren’t just quirky mistakes—they’re a major roadblock in creating trustworthy AI systems. By blending techniques like neurosymbolic AI, human-in-the-loop verification, and retrieval-augmented generation, we can push AI toward greater accuracy and reliability.

But here’s the big question: Should AI always strive to be 100% factual, or does some level of ‘creative hallucination’ have its place? After all, some of the best innovations come from thinking outside the box—even if that box is built from AI-generated data and machine learning algorithms.

At Mantra Labs, we specialize in data-driven AI solutions designed to minimize hallucinations and maximize trust. Whether you’re developing AI-powered products or enhancing decision-making with machine learning, our expertise ensures your models provide accurate information, making life easier for humans

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot