Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(152)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

5 Practical Use Cases of Data Science in Marketing

By :
4 minutes, 44 seconds read

Data Science is enormous. It brings forth a scientific approach to gather a massive amount of useful data from raw & disordered information (often collected from open sources). According to recent research, over 2.5 million terabytes of data appear daily. In 2020 every person produces 1.7 MB of data per second. Scientists, Analysts, and numerous other specialists use this data to derive decision-ready insights.

Using data science, marketers can get a clearer picture of their target audience. With this knowledge, any organization’s marketing department can formulate strategies to target customers who portray higher chances of conversion. Also, by delivering values, organizations can eventually maximize revenues. Going with the traditional methodologies, data processing can be a daunting task. Data Science offers a cost-effective solution to businesses seeking data-driven insights.

Let’s delve deeper into 5 most profitable and practical use cases of data science in marketing.

1. Budget Optimization

The primary goal of any marketer is to achieve the highest possible ROI from the allocated budget. This objective is undoubtedly difficult and time-consuming. On top of which, because of changing market dynamics and user preferences, strategies often go off the track leading to unanticipated outcomes.

Data science can be a saviour here. By analyzing the marketing department’s spending and acquisition ratio, organizations can build a model to distribute the budget in the smartest way possible. A clear picture will help marketers to invest money in the most relevant and surplus channels, thus optimizing key metrics.

2. Defining Audience Persona

While every marketer is familiar with the process of building the target audience portrait, determining the exact persona of the potential customer can still be a challenge. The lack of proper data insights might lead to ineffective advertiser decisions leading to a waste of resources.

Data science methods help marketers to understand the user persona and their preferred communication channels with data-driven insights. This means that the marketing budget will be spent on the right channels of influence, ignoring the irrelevant media, which a normal human being will think of covering for “just in case”. Such adjustment will inevitably increase the ROI and optimize the entire advertisement campaign. This will also retain brand relevance to the customers.

[Related: Your shopping cart just got a lot smarter!]

3. Brand New Social Media Marketing Strategy

Social media trends change faster than a human can track it. Facebook, LinkedIn, and Twitter define what is popular, and a marketer has to catch up with the trends.

Data science can keep you on track with the changing trends. Using the logic of Data Science in Marketing, one can get a bigger picture of what type of content people like interacting with. Data science allows us to gather and analyze data about people’s online behaviour. It provides the key metrics to adjust the SMM (Social Media Marketing) goals, which include – the time of posting, content type, amount, etc. These simple adjustments using data science insights can help increase the marketing ROI drastically.

4. Clearer Content Strategy

One of the biggest gaps between planning and execution that marketers face is knowing which channels will be affected and what kind of people will interact with their content and with what sentiment. Will be potential customers? Are interactors content gatherers? Are they the competition? Do they intend to ruin your reputation?

Knowing all this information will help streamline your content strategies.

As long as you know who your customers are; what are their perceptions about your brand; what information can attract/repel your customers; what social channels they are mostly active on; what are their sentiments with your content; what they usually do when they like or dislike a content; you’ll know what type of content you should produce.

For instance, some people hate emails, while others adore reading them. Some people want to resolve their queries publicly on social media, which some care about their online image. Data science can help achieve personalization to some extent, which can help humanize the conversations with your followers.

Let’s take another example of how data science in marketing can help stakeholders. It gives marketers insights about what phrases a customer would use while searching for a product/services online. Marketers can utilize this insight and prepare a content strategy that embeds these terms more often in your posts and articles.

Therefore, we can say that data science brings a variety of actionable insights about customer acquisition channels, their preferences, and engagement style, which can help plan content strategy accordingly.

5. Increasing Customer Loyalty

Your best customers are the ones who will not just purchase your product once but also will repeat buying and bring their friends and relatives to your store. Organizations realize that customer retention is easier than acquiring new customers.

But consolidating loyalty may be tricky. Data science can provide the marketing department with all the necessary information that can help boost customer loyalty. Based on purchase history and current search queries, analysts can predict their customer’s inclination towards a product. Accordingly, brands can create the most relevant offers for their customers. With personalized offers, existing customers feel special and will return to your brand and not go to the competitors.

The Essence of Data Science in Marketing

Using data science in marketing may ease the work of employees and uplift your strategies to new heights. We have to admit that the more structured information marketing teams have, the more effective their strategies become. At the core of any marketing efforts, data science can optimize cost for data processing and result in overwhelming conversion rates.

[Related: 5 Deep Learning Use Cases in Insurance]


About the Author: Marie Barnes is a writer for Bestforacar and an enthusiastic blogger interested in writing about technology, social media, work, travel, lifestyle, and current affairs. She shares her insights with the world through blogging. You can follow her on Medium.

Cancel

Knowledge thats worth delivered in your inbox

Machines That Make Up Facts? Stopping AI Hallucinations with Reliable Systems

There was a time when people truly believed that humans only used 10% of their brains, so much so that it fueled Hollywood Movies and self-help personas promising untapped genius. The truth? Neuroscientists have long debunked this myth, proving that nearly all parts of our brain are active, even when we’re at rest. Now, imagine AI doing the same, providing information that is untrue, except unlike us, it doesn’t have a moment of self-doubt. That’s the bizarre and sometimes dangerous world of AI hallucinations.

AI hallucinations aren’t just funny errors; they’re a real and growing issue in AI-generated misinformation. So why do they happen, and how do we build reliable AI systems that don’t confidently mislead us? Let’s dive in.

Why Do AI Hallucinations Happen?

AI hallucinations happen when models generate errors due to incomplete, biased, or conflicting data. Other reasons include:

  • Human oversight: AI mirrors human biases and errors in training data, leading to AI’s false information
  • Lack of reasoning: Unlike humans, AI doesn’t “think” critically—it generates predictions based on patterns.

But beyond these, what if AI is too creative for its own good?

‘Creativity Gone Rogue’: When AI’s Imagination Runs Wild

AI doesn’t dream, but sometimes it gets ‘too creative’—spinning plausible-sounding stories that are basically AI-generated fake data with zero factual basis. Take the case of Meta’s Galactica, an AI model designed to generate scientific papers. It confidently fabricated entire studies with fake references, leading Meta to shut it down in three days.

This raises the question: Should AI be designed to be ‘less creative’ when AI trustworthiness matters?

The Overconfidence Problem

Ever heard the phrase, “Be confident, but not overconfident”? AI definitely hasn’t.

AI hallucinations happen because AI lacks self-doubt. When it doesn’t know something, it doesn’t hesitate—it just generates the most statistically probable answer. In one bizarre case, ChatGPT falsely accused a law professor of sexual harassment and even cited fake legal documents as proof.

Take the now-infamous case of Google’s Bard, which confidently claimed that the James Webb Space Telescope took the first-ever image of an exoplanet, a factually incorrect statement that went viral before Google had to step in and correct it.

There are more such multiple instances where AI hallucinations have led to Human hallucinations. Here are a few instances we faced.

When we tried the prompt of “Padmavaat according to the description of Malik Muhammad Jayasi-the writer ”

When we tried the prompt of “monkey to man evolution”

Now, if this is making you question your AI’s ability to get things right, then you should probably start looking have a checklist to check if your AI is reliable.

Before diving into solutions. Question your AI. If it can do these, maybe these will solve a bit of issues:

  • Can AI recognize its own mistakes?
  • What would “self-awareness” look like in AI without consciousness?
  • Are there techniques to make AI second-guess itself?
  • Can AI “consult an expert” before answering?

That might be just a checklist, but here are the strategies that make AI more reliable:

Strategies for Building Reliable AI

1. Neurosymbolic AI

It is a hybrid approach combining symbolic reasoning (logical rules) with deep learning to improve factual accuracy. IBM is pioneering this approach to build trustworthy AI systems that reason more like humans. For example, RAAPID’s solutions utilize this approach to transform clinical data into compliant, profitable risk adjustment, improving contextual understanding and reducing misdiagnoses.

2. Human-in-the-Loop Verification

Instead of random checks, AI can be trained to request human validation in critical areas. Companies like OpenAI and Google DeepMind are implementing real-time feedback loops where AI flags uncertain responses for review. A notable AI hallucination prevention use case is in medical AI, where human radiologists verify AI-detected anomalies in scans, improving diagnostic accuracy.

3. Truth Scoring Mechanism

IBM’s FactSheets AI assigns credibility scores to AI-generated content, ensuring more fact-based responses. This approach is already being used in financial risk assessment models, where AI outputs are ranked by reliability before human analysts review them.

4. AI ‘Memory’ for Context Awareness

Retrieval-Augmented Generation (RAG) allows AI to access verified sources before responding. This method is already being used by platforms like Bing AI, which cites sources instead of generating standalone answers. In legal tech, RAG-based models ensure AI-generated contracts reference actual legal precedents, reducing AI accuracy problems.

5. Red Teaming & Adversarial Testing

Companies like OpenAI and Google regularly use “red teaming”—pitting AI against expert testers who try to break its logic and expose weaknesses. This helps fine-tune AI models before public release. A practical AI reliability example is cybersecurity AI, where red teams simulate hacking attempts to uncover vulnerabilities before systems go live 

The Future: AI That Knows When to Say, “I Don’t Know”

One of the most important steps toward reliable AI is training models to recognize uncertainty. Instead of making up answers, AI should be able to respond with “I’m unsure” or direct users to validated sources. Google DeepMind’s Socratic AI model is experimenting with ways to embed self-doubt into AI.

Conclusion:

AI hallucinations aren’t just quirky mistakes—they’re a major roadblock in creating trustworthy AI systems. By blending techniques like neurosymbolic AI, human-in-the-loop verification, and retrieval-augmented generation, we can push AI toward greater accuracy and reliability.

But here’s the big question: Should AI always strive to be 100% factual, or does some level of ‘creative hallucination’ have its place? After all, some of the best innovations come from thinking outside the box—even if that box is built from AI-generated data and machine learning algorithms.

At Mantra Labs, we specialize in data-driven AI solutions designed to minimize hallucinations and maximize trust. Whether you’re developing AI-powered products or enhancing decision-making with machine learning, our expertise ensures your models provide accurate information, making life easier for humans

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot