Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Cognitive Automation and Its Importance for Enterprises

One of Japan’s leading insurance firms — Fukoku Mutual Life Insurance claims to have replaced 34 human tasks with IBM Watson (AI technology).

Cognitive automation is a subset of artificial intelligence that uses advanced technologies like natural language processing, emotion recognition, data mining, and cognitive reasoning to emulate human intelligence. In simple words, cognitive automation uses technology to solve problems with human intelligence.

Cognitive automation vs Robotic Process Automation

The main pillars of cognitive automation

Consider an automated home security system programmed to function based on millions of decisions. It may still encounter situations when it does not know what to do. Machines can make logical decisions in many unforeseen situations using cognitive neuroscience. 

The technologies to make cognition-based decisions possible include natural language processing, text analytics, data mining, machine learning, semantic analytics, and more. The following table gives an overview of the technologies used in cognitive automation.

TECHNOLOGYDESCRIPTION
Machine LearningIt involves improving a system’s performance by learning through real-time interactions and without the need for explicitly programmed instructions.
Data MiningIt is the process of finding meaningful correlations, patterns, and trends from data warehouses/repositories using statistical and mathematical techniques.
Natural Language ProcessingNLP is a computer’s ability to communicate with humans in native languages. 
Cognitive ReasoningIt is the process of imitating human reasoning by engaging in complex content and natural dialogues with people.
Voice RecognitionIt is transcribing human voice and speech and translating it into text or commands.
Optical Character RecognitionIt uses pattern matching to convert scanned documents into corresponding computer text in real-time.
Emotion RecognitionIt is the understanding of a person’s emotional state during voice and text-based interactions.
Recommendation EngineIt is a framework for providing insights/recommendations based on different data components and analytics. For instance, Amazon was one of the first sites to use recommendation engines to make suggestions based on past browsing history and purchases.

Why is cognitive process automation important for enterprises?

Cognitive automation improves the efficiency and quality of computer-generated responses. In fact, cognitive processes are overtaking nearly 20% of service desk interactions. The following factors make cognitive automation next big enhancement for enterprise-level operations –

  1. Cost-effective: Cognitive automation can help companies to save up to 50% of their total spending for FTE, and other related costs.
  2. Operational Efficiency: Automation can enhance employee productivity, leading to better operational efficiency.
  3. Increased accuracy: Such systems are able to derive meaningful predictions from a vast repository of structured and unstructured data with impeccable accuracy. 
  4. Facts-based decision making: Strategic business decisions drill down to facts and experiences. Combining both, cognitive systems offer next level competencies for strategic decision making.
4 benefits of cognitive automation for enterprises

Also read – Cognitive approach vs digital approach in Insurance

Applications of cognitive automation

End-to-end customer service

Enterprises can understand their customer journey and identify the interactions where automation can help. For example, Religare — a leading health insurance company incorporated NLP-powered chatbot into their operations and automated their customer-support and achieved almost 80% FTE savings. Processes like policy renewal, customer query ticket management, handling general customer queries at scale, etc. are possible for the company through chatbots.

Processing transactions

Reconciliation is a tedious yet crucial transaction process. Banking and financial institutions spend enormous time and resources on the process. Paper-based transactions, different time zones, etc. add to the complicacy of settling transactions. With human-like decision-making capabilities, cognitive automation holds a huge prospect of simplifying the transaction-related processes.

Claims processing

In insurance, claims settlement is a huge challenge as it involves reviewing policy documents, coverage, the validity of insured components, fraud analytics, and more. Cognitive systems allow making automated decisions in seconds by analyzing all the claims parameters in real-time.

Also read – How intelligent systems can settle claims in less than 5 minutes

Requirements

Deloitte’s report on how robotics and cognitive automation will transform the insurance industry states that soon, automation will replace 22.7 million jobs and create 13.6 million new jobs. However, not all operations can be automated. The following are the requirements for successfully automating processes.

  1. Input sources: The input sources should be machine-readable, or needs to be converted into one. Also, there’s a limitation to the number of sources that the system can process for decision making. For instance, in an email management process, you cannot automate the resolution of every individual email. 
  2. Availability of the technology: Cognitive automation combines several technologies like machine learning, natural language processing, analytics, etc. Thus, all the technologies should be available to make automated processes functional. 
  3. Data availability: For the cognitive system to make accurate decisions, there should be sufficient data for modeling purposes.
  4. Risk factor: Processes like underwriting and data reconciliation are good prospects of cognitive automation. However, based on the risk value and practical aspects, human intervention may be required to make the final decision.
  5. Transparency & control: Cognitive automation is still in a nascent stage and humans may overturn machine-made decisions. Therefore, the system design needs to adhere to transparency and control guidelines.

Wrapping up

Cognitive systems are great for deriving meaningful conclusions from unstructured data. Many back and front office operations can be automated for improving efficiency, especially in consumer-facing functions to understand requirements and feedback. For instance, cognitive automation comes with powerful emotion recognition capabilities. It can help with making sense of customer tweets, social updates, through face recognition and analyzing texts. 

Since cognitive automation solutions help enterprises to adapt quickly and respond to new information and insights, it is becoming crucial for customer-centric businesses. The following graph shows how important cognitive technology adoption is for businesses that focus on consumer centricity.

Customer centricity and cognitive technology adoption
Source: Deloitte

Also read – 5 Front office operations you can improve with AI

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot