Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

The Cognitive Cloud Insurer is Next

4 minutes, 8 seconds read

Today’s Insurance enterprise is moving away from the all-too-familiar ‘reactive-only’ approach to a new predictive-first model. The sector is seeing dramatic changes, as we enter the fourth Industrial Revolution (Industry 4.0) — or The Connected Age. Digital businesses are gradually realizing the limitations of human and machine systems without any real intelligence or computing power behind it. Between human prone errors and the scalability challenges of traditional technologies — a new mechanism is required to learn and adapt better. 

Enter Cognitive Computing. But what is it?

The short answer is — it has everything to do with interpreting data. Big Data, to be precise. This activity is particularly hard because most of the data in use remains unstructured. In insurance, for example, nearly 90% of carrier data is disparate or partially structured as text & image data, in varying formats. With cognitive computing, data can be made meaningful and then used to derive new insights for future use.


To achieve this, ‘Cognitive Systems’ leverage the use of distinct technologies such as natural language processing, machine learning and automated reasoning. It helps in processing great volumes of complex data and can aid faster & accurate decision-making by breaking down the complexities in big data. When done right, a cognitive computing system can comprehend, reason, learn and interact with humans naturally ultimately enhancing the enterprise’s digital intelligence capabilities.

Another aspect of cognitive computing is the ‘Cloud’ advantage. Cloud computing is not new, however, when fitted with a cognitive solution — it can foster dramatic agility to organizational workflows. 

For the digital insurer, this means that all aspects of the value chain can be transformed, ushering in a new business model that seamlessly engages with both customers and prospects in near-real-time, at all times. 

Also read – How does XaaS help your business?

The Cognitive Insurance Transformation Journey

Transitioning from a digital to a cognitive business enabled by the ‘cloud’ has a clear business objective behind it — evolve the model to improve profitability. The addition of the cognitive component allows smart systems to free up critical manned resources and drives greater (STP) straight-through processing. 

Take ‘underwriting’ for example, which is an area of insurance that necessitates looking at  vast heaps of unstructured data. Without the supporting information, the risk cannot be precisely measured or priced. 

Accelerating data analysis from historical information can improve the underwriter’s efficiency in the manufacture of meaningful and personalised insurance products, within short turn-around time. This is how insurance carriers will stay their competitive advantage when vying for the wallet-share and mind-share of tomorrow’s customer.

The Cognitive Insurer in cloud is Next

Source: The Cognitive Insurance Value Chain

Yet, the redesign of the underwriting process is only one of many insurance processes that has the potential for Cognitive enhancement. The number of connected things will grow to 25 billion by 2021, which will increase the amount of data. Insurance data alone is expected to grow by 94%. Other parts of the value chain like claims processing, new business and underwriting, rapid customer onboarding, rules-based processes and contract validation are also experiencing cognitive upgradation.

In the past few years, the number of cognitive projects in insurance is on the rise. Carriers are running pilots, testing and validating the right use cases to invest in. For instance, Australian Insurer, Suncorp used IBM’s Watson for ratifying a specific use case — determining who is liable for causing a motor accident, by studying 15,000 historical records of de-personalised claim files.

The Cognitive Insurance process and application

Source: CognitiveScale

Intelligent and cognitive systems like these can do a lot more. From cognitive claims to cognitive chatbots — AI and Machine Learning are behind new behaviour-based, pay-as-you-use products in insurance. Automated post-hospitalisation claims, Motor damage estimation using advanced image recognition, Cognitive mail handling through intention analysis, etc. among others are just a few examples of AI solutions being deployed by Insurers, who are evolving their business models along their transformation journey.

Our own SaaS-based intelligent platform built for improving insurer workflows, FlowMagic takes advantage of cloud-based capabilities to enhance business automation. The intuitive Visual Platform uses AI-powered applications that are easily configurable requiring zero-coding effort, while the jobs can be visually monitored continuously to give real-time decision-ready insights.

Cognitive-Insurance-Ecosystem-Flowmagic

FlowMagic — Visual AI Platform for Insurer Workflows

Here’s a simple 3 step formula for a successful cognitive cloud transformation journey:


1. Identify (internally) use cases with a potential for a high degree of market disruption.

2. Validate (both internally & externally) the use cases through small-scale pilot deployments.

3. Define areas in your operational value chain ripe for transformation, that will enable new processes, engagements and business models through it.

By 2020, 25% of customer service and support operations will integrate with cognitive cloud-enabled chatbots to deliver natural, conversational guidance to users. Solutions like these have proven demonstrable ROI in both front & back-office operations, creating over 80% FTE savings for the enterprise.

Mantra Labs is an InsurTech100 company, that helps digital insurance enterprises enhance agility and operational efficiency through new Cognitive Cloud capabilities. To know how, reach out to us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot