Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(152)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

How to Succeed in Chatbot Writing for Outstanding Customer Engagement in Retail

By :
3 minutes, 15 seconds read

Chatbots are the assistants of the future and they are taking the Internet by storm. Ever since their first appearance in 1994, the goal was to create an AI that could conduct a real dialogue with their interlocutors. The purpose is to free up customer service agents’ time so they could focus on more delicate tasks- which require a more human approach.

If you are thinking about including a chatbot on your website, here are the things you need to keep in mind to boost customer engagement and deliver high-quality services.

Define your audience

First things first- think about who will be interacting with the chatbot? Who are your customers? How do they talk? How can you address them in a way they’ll enjoy? How can you help them?

For instance, if your company sells clothes that are mostly designed for young adults, using a less formal tone will be much more appealing to them.

Lisa Wright, a customer service specialist at Trust My Paper advice: “Customer service calls are usually recorded, so listening to a few of them can be a good place to start designing your chatbot’s lines of dialogue.”

Give your bot some character

People don’t like to talk to plain, simple robots. Therefore, giving your chatbot some personality is a must. Some brands prefer naming their chatbots and even design an animated character for them. This makes the interaction more real.

For example, The SmarterChild chatbot- designed back in 2000, was able to speak to around 2,50,000 humans every day with funny, sad, and sarcastic emotions.

However, the chatbot’s character needs to match your brand identity and at the same time- appeal to customers. Think about – how would the bot speak, if they were real? Are there some phrases or words they would never use? Do they tell jokes? All these need to be well-thought through, before going into the chatbot writing and design phase.

According to a report published by Ubisend in 2017, 69% of customers use the chatbot to get an instant answer. Only 15% of them would interact for fun. Thus, don’t sacrifice the performance for personality. 

Also read – 5 Key Success Metrics for Chatbots

Revise your goals before chatbot writing

Alexa- Amazon bot has 30+ skills which include scheduling an appointment, booking a cab, reading news, playing music, controlling a smartphone, and more. However, every business bot doesn’t need to be a pro in every assisting job.

Before entering the writing phase, think over once again – WHY you need a chatbot? Will it help customer service only? Or will it also help in website navigation, purchase, return, refund, etc.?

Usually, customers want one of the three things when they visit your site: an answer to something they’re looking for, make a purchase, or a solution to their problem. You can custom build your chatbot to tackle either one or all of these three situations. Many brands use chatbots to create tailored products for their clients.  

AI Chatbot in Insurance Report

AI in Insurance will value at $36B by 2026. Chatbots will occupy 40% of overall deployment, predominantly within customer service roles.
DOWNLOAD REPORT

Cover all possible scenarios

When you start writing the dialogue, consider the fact that a conversation can go in many directions. To ensure that all the situations are covered- start with a flowchart of all possible questions and the answers you chatbot can give.

To further simplify your chatbot writing, take care of one scenario at a time and focus on keeping the conversation short and simple. If the customer is too specific or is not satisfied with the bot’s response, do not hesitate to redirect them to your customer service representatives.

For instance, Xiaoice is one of the most successful interactive chatbots launched by Microsoft in July 2014. Within three months of its launch, Xiaoice accomplished over 0.5 billion conversations. In fact, speakers couldn’t understand that they’re talking to a bot for 10 minutes.

Also read – Why should businesses consider chatbots?

This article is contributed to Mantra Labs by Dorian Martin. Dorian is an established blogger and content writer for business, career, education, marketing, academics, and more.

Cancel

Knowledge thats worth delivered in your inbox

Machines That Make Up Facts? Stopping AI Hallucinations with Reliable Systems

There was a time when people truly believed that humans only used 10% of their brains, so much so that it fueled Hollywood Movies and self-help personas promising untapped genius. The truth? Neuroscientists have long debunked this myth, proving that nearly all parts of our brain are active, even when we’re at rest. Now, imagine AI doing the same, providing information that is untrue, except unlike us, it doesn’t have a moment of self-doubt. That’s the bizarre and sometimes dangerous world of AI hallucinations.

AI hallucinations aren’t just funny errors; they’re a real and growing issue in AI-generated misinformation. So why do they happen, and how do we build reliable AI systems that don’t confidently mislead us? Let’s dive in.

Why Do AI Hallucinations Happen?

AI hallucinations happen when models generate errors due to incomplete, biased, or conflicting data. Other reasons include:

  • Human oversight: AI mirrors human biases and errors in training data, leading to AI’s false information
  • Lack of reasoning: Unlike humans, AI doesn’t “think” critically—it generates predictions based on patterns.

But beyond these, what if AI is too creative for its own good?

‘Creativity Gone Rogue’: When AI’s Imagination Runs Wild

AI doesn’t dream, but sometimes it gets ‘too creative’—spinning plausible-sounding stories that are basically AI-generated fake data with zero factual basis. Take the case of Meta’s Galactica, an AI model designed to generate scientific papers. It confidently fabricated entire studies with fake references, leading Meta to shut it down in three days.

This raises the question: Should AI be designed to be ‘less creative’ when AI trustworthiness matters?

The Overconfidence Problem

Ever heard the phrase, “Be confident, but not overconfident”? AI definitely hasn’t.

AI hallucinations happen because AI lacks self-doubt. When it doesn’t know something, it doesn’t hesitate—it just generates the most statistically probable answer. In one bizarre case, ChatGPT falsely accused a law professor of sexual harassment and even cited fake legal documents as proof.

Take the now-infamous case of Google’s Bard, which confidently claimed that the James Webb Space Telescope took the first-ever image of an exoplanet, a factually incorrect statement that went viral before Google had to step in and correct it.

There are more such multiple instances where AI hallucinations have led to Human hallucinations. Here are a few instances we faced.

When we tried the prompt of “Padmavaat according to the description of Malik Muhammad Jayasi-the writer ”

When we tried the prompt of “monkey to man evolution”

Now, if this is making you question your AI’s ability to get things right, then you should probably start looking have a checklist to check if your AI is reliable.

Before diving into solutions. Question your AI. If it can do these, maybe these will solve a bit of issues:

  • Can AI recognize its own mistakes?
  • What would “self-awareness” look like in AI without consciousness?
  • Are there techniques to make AI second-guess itself?
  • Can AI “consult an expert” before answering?

That might be just a checklist, but here are the strategies that make AI more reliable:

Strategies for Building Reliable AI

1. Neurosymbolic AI

It is a hybrid approach combining symbolic reasoning (logical rules) with deep learning to improve factual accuracy. IBM is pioneering this approach to build trustworthy AI systems that reason more like humans. For example, RAAPID’s solutions utilize this approach to transform clinical data into compliant, profitable risk adjustment, improving contextual understanding and reducing misdiagnoses.

2. Human-in-the-Loop Verification

Instead of random checks, AI can be trained to request human validation in critical areas. Companies like OpenAI and Google DeepMind are implementing real-time feedback loops where AI flags uncertain responses for review. A notable AI hallucination prevention use case is in medical AI, where human radiologists verify AI-detected anomalies in scans, improving diagnostic accuracy.

3. Truth Scoring Mechanism

IBM’s FactSheets AI assigns credibility scores to AI-generated content, ensuring more fact-based responses. This approach is already being used in financial risk assessment models, where AI outputs are ranked by reliability before human analysts review them.

4. AI ‘Memory’ for Context Awareness

Retrieval-Augmented Generation (RAG) allows AI to access verified sources before responding. This method is already being used by platforms like Bing AI, which cites sources instead of generating standalone answers. In legal tech, RAG-based models ensure AI-generated contracts reference actual legal precedents, reducing AI accuracy problems.

5. Red Teaming & Adversarial Testing

Companies like OpenAI and Google regularly use “red teaming”—pitting AI against expert testers who try to break its logic and expose weaknesses. This helps fine-tune AI models before public release. A practical AI reliability example is cybersecurity AI, where red teams simulate hacking attempts to uncover vulnerabilities before systems go live 

The Future: AI That Knows When to Say, “I Don’t Know”

One of the most important steps toward reliable AI is training models to recognize uncertainty. Instead of making up answers, AI should be able to respond with “I’m unsure” or direct users to validated sources. Google DeepMind’s Socratic AI model is experimenting with ways to embed self-doubt into AI.

Conclusion:

AI hallucinations aren’t just quirky mistakes—they’re a major roadblock in creating trustworthy AI systems. By blending techniques like neurosymbolic AI, human-in-the-loop verification, and retrieval-augmented generation, we can push AI toward greater accuracy and reliability.

But here’s the big question: Should AI always strive to be 100% factual, or does some level of ‘creative hallucination’ have its place? After all, some of the best innovations come from thinking outside the box—even if that box is built from AI-generated data and machine learning algorithms.

At Mantra Labs, we specialize in data-driven AI solutions designed to minimize hallucinations and maximize trust. Whether you’re developing AI-powered products or enhancing decision-making with machine learning, our expertise ensures your models provide accurate information, making life easier for humans

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot