Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Are Bots Worth a Shot?

According to Oracle’s Executive survey, 80% of leading consumer-facing businesses have already used or are planning to use chatbots by 2020. Chatbots are scalable and cost almost nothing in operation as compared to their human counterparts. But, how practical is chatbot adoption for your business? Let’s see.

5 Key Success Metrics for Chatbots

Different industries can utilize chatbots to serve different purposes. Accordingly, the parameters to measure ROI may vary. For instance, marketers may consider lead generation as a criterion while the sales department takes conversions from chatbots into account. But, of course, the decision to opt for chatbots depends on specific quantifiable measures — to solve specific customer support processes.

What makes bots successful

#1 NLP Maturity

It is the average maturity level of Natural Language Processing capability of bots, measured by the way bot interacts. Initiating conversations with customers is a key focus area among organizations these days. To achieve this, bots have to be well trained in industry-specific jargon.

For instance, if a retail customer has a question about a brand’s return policy, the bot should be able to meaningfully understand the user’s query and provide relevant information as it relates to that specific question, as opposed to an information dump or worse yet failing to understand the query itself. If a bot is unable to process the user input, it contributes to ‘miss-messages’. Such instances occur when the user inputs query in a regional or idiomatic language. 

#2 Response Time

It is the average time taken for the chatbot to respond to customer queries, based on the total number of messages sent by a chatbot during an interaction. Typically this can average around 5-6 seconds. However, research indicates that users will leave a site if key elements take more than 3 seconds to load. 

#3 Intent Prediction

It is the ability of the bot to anticipate what a customer wants in real-time. To achieve this, the bot must be paired with multiple sources of data and AI capable — in order to combine user behaviour, transactions, and profile details. Using this, the bot can determine intent based on both aggregated interactions for known and unknown users, and personalized data pulled from back-end systems.

#4 Retention Rate

It defines the number of users who willingly return to using the chatbot to address their issues. The retention rate varies according to industries. However, the clear formula for increasing user retention is to equip chatbots with the ability to understand user queries and empathically respond to them. This metric is directly correlated with the ability to personalize sales and/or customer service greetings, in 1:1 messaging.

#5 Goal Completion and Fall-back Rate

The number of times a chatbot can resolve the query, manage ticket, generates leads, or results in conversion determines its goal completion rate. However, like humans, bots, at times, might not be handle queries on their own. Such instances account for the fall-back rate of the bots. 

Here’s an insightful read on why businesses should consider chatbots.

Successful Chatbot Adoption Across Businesses

Providing 24×7 support is not impossible for any organization. But, the labour cost associated is high, which makes chatbots a viable solution for instant customer support. IBM reports that globally businesses spend over $1.3 trillion/year to handle roughly 265 billion customer calls. 

The following are examples of chatbots adoption for cost savings.

#Messenger Marketing Bot

ManyChat provides bot platform on Facebook Messenger for marketing, e-commerce, and support. DigitalMarketer incorporated ManyChat’s bot for messenger marketing and have reported very high returns on their ad spend (nearly 500% ROI).

#Insurance Chatbot

Religare has incorporated chatbot on its website and WhatsApp to handle customer queries. It has resulted in 10 times more customer interaction and 5 times more sales conversion.

Here are more insurance chatbot use cases.

#B2C Chatbot Offering Personalization

1-800-Flowers is using IBM Watson’s Gwyn smart virtual shopping assistant. It interacts with customers to understand their gift preferences and accordingly help them select a personalized gift for their loved ones. More than 70% of 1-800-Flowers customers are happily ordering through Gwyn bot.

Here’s a sample Chatbot ROI calculation from a financial perspective.

The Future of Chatbots

CNBC reports, currently businesses are saving $20 million per year globally through chatbot adoption. By 2022, chatbots can cut operational costs by more than $8 billion per year. Also, researchers predict that by 2025, bots will accomplish about 90% of the B2C interactions. Looking at the reduction in cost and ease of operation, investing in chatbots is worth it.

We specialize in building NLP and AI-powered chatbots for enterprises. Drop us a line at hello@mantralabsglobal.com to know more.

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot