Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

5 casos de uso de aprendizaje profundo en seguros

En 2010, con el lanzamiento de Image Net Competition, un vasto conjunto de datos de aproximadamente 14 millones de imágenes etiquetadas fue hecho el código abierto para inspirar el desarrollo de clasificadores de la imagen de la vanguardia  se convirtió en código abierto para inspirar el desarrollo de clasificadores de imágenes de vanguardia. Esto fue cuando la tecnología de aprendizaje profundo tuvo un gran avance y desde entonces no ha habido retroceso en los avances en este campo.

Diferentes industrias están utilizando activamente el Aprendizaje Profundo para la detección de objetos, etiquetado de características, análisis de imágenes, análisis de sentimientos y procesamiento de datos a velocidades extremadamente altas. El mayor beneficio que diferencia a Aprendizaje Profundo de otras tecnologías de IA (inteligencia artificial) y ML (el aprendizaje automático) es la capacidad de entrenar grandes cantidades de datos no estructurados casi en tiempo real. Las organizaciones con un fuerte enfoque en los datos ya tienen aproximadamente 1.5 veces más probabilidades de invertir en Aprendizaje Profundo para obtener información procesable: predice Forrester.

¿Qué hace que la tecnología de aprendizaje profundo sea tan buscada?

Echemos un vistazo a 5 casos de uso de aprendizaje profundo desde una perspectiva de los seguros.

5 casos de uso de Aprendizaje Profundo notables en seguros

Aprendizaje Profundo (DL) es una rama del aprendizaje automático, que se basa en redes neuronales artificiales. Las técnicas de DL son específicamente útiles para determinar patrones en grandes datos no estructurados. Es altamente beneficioso para evaluar daños durante un accidente, identificar anomalías en la facturación, etc. que eventualmente pueden ayudar en la detección de fraudes y mejores experiencias de los clientes.

La industria de seguros puede aprovechar la tecnología de aprendizaje profundo para mejorar el servicio, la automatización y la escala de las operaciones.

1. Análisis de propiedad

Por lo general, las aseguradoras analizan una propiedad solo una vez antes de cotizar una prima de seguro. Sin embargo, un cliente puede remodelar la propiedad, por ejemplo, instalar una piscina.

En tales casos, las aseguradoras pueden modificar proactivamente la cobertura del seguro con la ayuda de la tecnología de aprendizaje profundo. De hecho, con la tecnología de DL, las aseguradoras pueden ayudar a sus clientes con mantenimiento predictivo, análisis de fallas y apoyo en tiempo real.

Por ejemplo, El Nodo proporciona suscripción para propiedades multifamiliares. Permite a los usuarios analizar el alquiler histórico, los datos de concesión y los valores de mercado. Estas herramientas basadas en datos también son de gran ayuda para las aseguradoras.

2. Ofertas personalizadas

Las aseguradoras están buscando diferentes formas de mejorar la experiencia del cliente. El Aprendizaje Profundo puede mejorar vívidamente las experiencias de interacción en diferentes puntos de contacto con el cliente. Tomemos, por ejemplo, el alcance de marketing. A través de recomendaciones personalizadas y estrategias de remarketing dinámico, las aseguradoras pueden lograr mejores conversiones. McKinsey afirma que la personalización puede reducir gastos de adquisición del cliente en hasta el 50%.

En el núcleo de estas estrategias se encuentra la tecnología de aprendizaje profundo. La tecnología DL puede hacer clasificaciones lógicas de datos no estructurados a través de un aprendizaje no supervisado. Ya hemos visto recomendaciones de productos basadas en nuestras propias preferencias, patrones de navegación / búsqueda e intereses de los compañeros. Lo mismo se aplica a la industria de los seguros, especialmente cuando las aseguradoras buscan ganancias a través de productos de seguros de tamaño reducido y bajo demanda.

3. Precios / análisis actuarial

El análisis y la evaluación actuariales son procesos que requieren mucho tiempo y son propensos a errores. Las aseguradoras pueden mejorar considerablemente los precios de las pólizas a través del razonamiento automatizado. Las técnicas de aprendizaje profundo combinan estadísticas, finanzas, negocios y razonamiento basado en el caso y pueden asistir a actuarios en la mejor evaluación de riesgos . Informes de Accenture: las aseguradoras están aprovechando el aprendizaje automático para la suscripción de seguros generales (56%) y de vida (39%).

  1. La IA explicable (XAI) es capaz de adoptar e implementar la IA en todas las capacidades de la profesión actuarial.
  2. El reconocimiento de patrones a partir de datos históricos puede ayudar a evaluar el riesgo y comprender mejor el mercado.
  3. El aprendizaje profundo puede ayudar en soluciones actuariales pragmáticas para tomar decisiones efectivas sobre grandes conjuntos de datos actuariales.

4. Casos de uso de Aprendizaje Profundo en detección de fraude

Solo en Noruega en 2019, hubo 827 casos de fraude probados, que podrían haber causado una pérdida de más de € 11 millones a las aseguradoras.

El fraude de seguros generalmente ocurre en forma de reclamaciones . Un reclamante puede falsificar la identidad, duplicar reclamos, exagerar los costos de reparación y presentar recibos y facturas médicas falsas. Principalmente debido a fuentes de información desconectadas, las aseguradoras se caen de la víctima con actividades fraudulentas de clientes. Ahora, aquí está el desafío. ¿Cómo unificar diferentes fuentes de datos, que, hasta la fecha, incluyen recibos autónomos y documentos escaneados manualmente?

Aprendizaje Profundo puede ayudar en la detección de fraudes al:

  • Encontrar correlaciones ocultas / implícitas en los datos.
  • Reconocimiento facial, análisis de sentimientos en la solicitud de reclamos presentada.
  • Aprendizaje supervisado para capacitar a los modelos de detección de fraude usando datos históricos etiquetados.
  • Eliminar el retraso en la verificación de documentos, lo que aumenta el potencial de violación de datos.

5. Reclamaciones

El aprendizaje profundo incorpora beneficios dobles para las aseguradoras en términos de reclamos. Uno: con un ecosistema de información conectado, ayuda a las aseguradoras con una liquidación de reclamos más rápida (por lo tanto, la experiencia del cliente también). Dos, los modelos predictivos de aprendizaje profundo pueden equipar a las aseguradoras con una mejor comprensión del costo de las reclamaciones.

Por ejemplo, Tokio Marine, el mayor grupo de seguros de P&C (propiedad y daños) más grande de Japón, utiliza un sistema de procesamiento de documentos basado en la nube para procesar reclamaciones manuscritas desde el momento de la primera intimidación. Muchas aseguradoras esperan sistemas de procesamiento de reclamos de extremo a extremo con aprendizaje profundo y otras capacidades de IA.

El Quid

Hoy en día, la tecnología de Aprendizaje Profundo tiene capaz de imitar el cerebro de un bebé. La investigación está en el desarrollo de nuevas arquitecturas de redes neuronales (por ejemplo Siamese Network, el modelo GPT-2 de OpenAI, etc.) que serán capaces de realizar funcionalidades complejas de un cerebro humano maduro. La tecnología de Aprendizaje Profundo, en un futuro próximo, liderará el desarrollo de sistemas de seguros basados ​​en la cognición.

También, Lea: ¡La aseguradora cognitiva en la nube es la siguiente!

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot