Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(7)

Customer Journey(17)

Design(41)

Solar Industry(7)

User Experience(64)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(10)

Enterprise Solution(28)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(36)

Insurtech(64)

Product Innovation(55)

Solutions(21)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(139)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(18)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

How we used RetinaNet for dense shape detection in live imagery

Convolutional Neural Networks (CNN) have come a long way in conveniently identifying objects in images and videos. Networks like VGG19, ResNet, YOLO, SSD, R-CNN, DensepathNet, DualNet, Xception, Inception, PolyNet, MobileNet, and many more have evolved over time. Their range of applications lies in detecting space availability in a parking lot, satellite image analysis to track ships and agricultural output, radiology, people count, detecting words in vehicle license plates and storefronts, circuits/machinery fault analysis, medical diagnosis, etc.

Facebook AI Research (FAIR) has recently published RetinaNet architecture which uses Feature Pyramid Network (FPN) with ResNet. This architecture demonstrates higher accuracy in situations where speed is not really important. RetinaNet is built on top of FPN using ResNet.

Comparing tradeoff between speed and accuracy of different CNNs

Google offers benchmark comparison to calculate tradeoff between speed and accuracy of various networks using MS COCO dataset to train the models in TensorFlow. It gives us a benchmark to understand the best model that provides a balance between speed and accuracy. According to researchers, Faster R-CNN is more accurate, whereas R-FCN and FCN show better inference time (i.e. their speed is higher). Inception and ResNet are implementations of Faster R-CNN. MobileNet is an implementation of SSD.

Faster R-CNN implementations show an overall mAP (mean average precision) of around 30, which is highest for feature extraction. And, at the same time, its accuracy is also highest at around 80.5%. MobileNet R-FCN implementation has a lower mAP of around 15. Therefore, its accuracy drops down to about 71.5%. 

Thus, we can say — SSD implementations work best for detecting larger objects whereas, Faster R-CNN and R-FCN are better at detecting small objects.

speed and accuracy of various CNNs

On the COCO dataset, Faster R-CNN has average mAP for IoU (intersection-over-union) from 0.5 to 0.95 (mAP@[0.5, 0.95]) as 21.9% . R-FCN has mAP of 31.5% . SSD300 and SSD512 have mAPs of 23.2 and 26.8 respectively . YOLO-V2 is at 21.6% whereas YOLO-V3 is at 33% . FPN delivers 33.9% . RetinaNet stands highest at 40.8%.

RetinaNet- AP vs speed comparison
The two variations of RetinaNet are compared above for AP vs speed (ms) for inference.

One-stage detector vs two-stage detectors for shape detection

A One-stage detector scans for candidate objects sampled for around 100000 locations in the image that densely covers the spatial extent. This does not let the class balance between background and foreground. 

A Two-stage detector first narrows down the number of candidate objects on up to 2000 locations and separates them from the background in the first stage. It then classifies each candidate object in the second stage, thus managing the class balance. But, because of the smaller number of locations in the sample, many objects might escape detection. 

Faster R-CNN is an implementation of the two-stage detector. RetinaNet, an implementation of one stage detector addresses this class imbalance and efficiently detects all objects.

Focal Loss: a new loss function

This function focuses on training on hard negatives. It is defined as-

focal loss function

Where,

focal loss function

and p = sigmoid output score.

The greeks are hyperparameters.


When a sample classification is inappropriate and pₜ is small, it does not affect the loss. Gamma is a focusing parameter and adjusts the rate at which the easy samples are down-weighted. Samples get down-weighted when their classification is inappropriate and pₜ is close to 1. When gamma is 0, the focal loss is close to the cross-entropy loss. Upon increasing gamma, the effect of modulating factor also increases.

RetinaNet Backbone

The new loss function called Focal loss increases the accuracy significantly. Essentially it is a one-stage detector Feature Pyramid Network with Focal loss replacing the cross-entropy loss. 

Hard negative mining in a single shot detector and Faster R-CNN addresses the class imbalance by downsampling the dominant samples. On the contrary, RetinaNet addresses it by changing the weights in the loss function. The following diagram explains the architecture.

RetinaNet architecture

Here, deep feature extraction uses ResNet. Using FPN on top of ResNet further helps in constructing a multi-scale feature pyramid from a single resolution image. FPN is fast to compute and works efficiently on multiscale.

Results

We used ResNet50-FPN pre-trained on MS COCO to identify humans in the photo. The threshold is set above a score of 0.5. The following images show the result with markings and confidence values.

Dense shape detection
Human shape detection

We further tried to detect other objects like chairs.

RetinaNet object detection

Conclusion: It’s great to know that training on the COCO dataset can detect objects from unknown scenes. The object detection in the scenes took 5-7 seconds. So far, we have put filters of human or chair in results. RetinaNet can detect all the identifiable objects in the scene.

Multiple objects detection using RetinaNet

The different objects detected with their score are listed below-

human0.74903154
human0.7123633
laptop0.69287986
human0.68936586
bottle0.67716646
human0.66410005
human0.5968385
chair0.5855772
human0.5802317
bottle0.5792091
chair0.5783555
chair0.538948
human0.52267283

Next, we will be interested in working on a model good in detecting objects in the larger depth of the image, which the current ResNet50-FPN could not do.

About author: Harsh Vardhan is a Tech Lead in the Development Department of Mantra Labs. He is integral to AI-based development and deployment of projects at Mantra Labs.

General FAQs

What is RetinaNet?

RetinaNet is a type of CNN (Convolutional Neural Network) architecture published by Facebook AI Research also known as FAIR. It uses the Feature Pyramid Network (FPN) with ResNet. RetinaNet is widely used for detecting objects in live imagery (real-time monitoring systems). This architecture demonstrates a high-level of accuracy, but with a little compromise in speed. In the experiment we conducted, it took 5-7 seconds for object detection in live scenes.Dense shape detection - RetinaNet

What is RetinaNet Model?

RetinaNet model comprises of a backbone network and two task-specific sub-networks. The backbone network is a Feature Pyramid Network (FPN) built on ResNet. It is responsible for computing a convolution feature (object) from the input imagery. The two subnetworks are responsible for the classification and box regression, i.e. one subnet predicts the possibility of the object being present at a particular spatial location and the other subnetwork outputs the object location for the anchor box.

What is Focal Loss?

The focal loss function focuses on training on hard negatives. In other words, the focal loss function is an algorithm for improving Average Precision (AP) in single-stage object detectors. It is defined as-RetinaNet focal loss function

What is SSD Network?

Single Shot Detector (SSD) can detect multiple objects in an image in a single shot, hence the name. 
The beauty of SSD networks is that it predicts the boundaries itself and has no assigned region proposal network. SSD networks can predict the boundary boxes and classes from feature maps in just one pass by using small convolutional filters.

Glossary of Terms related to convolutional neural networks

CNN

Deep Learning uses Convolutional neural networks (CNN) for analyzing visual imagery. It consists of an input and output layer and multiple intermediate layers. In CNN programming, the input is called a tensor, which is usually an image or a video frame. It passes through the convolutional layer forming an abstract feature map identifying different shapes.

R-CNN

The process of combining region proposals with CNN is called as R-CNN. Region proposals are the smaller parts of the original image that have a probability of containing the desired shape/object. The R-CNN algorithm creates several region proposals and each of them goes to the CNN network for better dense shape detection.

ResNet

Residual Neural Network (ResNet) utilizes skip connections to jump over some layers. Classical CNNs do not perform when the depth of the network increases beyond a certain threshold. Most of the ResNet models are implemented with double or triple layer skips with batch normalization in between. ResNet helps in the training of deeper networks.

YOLO

You only look once (YOLO) is a real-time object detection system. It is faster than most other neural networks for detecting shapes and objects. Unlike other systems, it applies neural network functions to the entire image, optimizing the detection performance.

FAIR

It is Facebook’s AI Research arm for understanding the nature of intelligence and creating intelligent machines. The main research areas at FAIR include Computer Vision, Conversational AI, Integrity, Natural Language Processing, Ranking and Recommendations, System Research, Theory, Speech & Audio, and Human & Machine Intelligence.

FPN

Feature Pyramid Network (FPN) is a feature extractor designed for achieving speed and accuracy in detecting objects or shapes. It generates multiple feature map layers with better quality information for object detection.

COCO Dataset

Common Objects in Context (COCO) is a large-scale dataset for detecting, segmenting, and captioning any object. 

FCN

Fully Convolutional Network (FCN) transforms the height and width of the intermediate layer (feature map) back to the original size so that predictions have a one-to-one correspondence with the input image. 

R-FCN

R-FCN corresponds to a region-based fully convolutional network. It is mainly used for feature detection. R-FCN comprises region-based feature maps that are independent of region proposals (ROI) and carry computation outside of ROIs. It is much simpler and about 20 times faster than R-CNN. 

TensorFlow

It is an open-source software library developed by Google Brain for a range of dataflow and differential programming applications. It is also useful in neural network programming. 

Also read – How are Medical Images shared among Healthcare Enterprises



Cancel

Knowledge thats worth delivered in your inbox

Data Sharing: The Healthcare Superpower You Didn’t Know Was Needed

By :

Imagine a world where doctors can instantly access a patient’s entire medical history, from birth to the present, with just a few clicks. A world where researchers can rapidly analyze vast digital health records to discover groundbreaking new treatments. This seamless access to information isn’t just a dream—it’s the potential reality of effective data sharing in healthcare.

By breaking down the barriers that currently isolate crucial healthcare data, we can transform patient care, streamline operations, and accelerate medical advancements. The future of healthcare lies in the power of connected information, ensuring that every decision made is informed, accurate, and timely.

Barriers that are hindering Data Sharing in Healthcare

1. Data Silos: Healthcare providers often store patient information in isolated systems that do not communicate with each other. This fragmentation leads to a lack of coordination, duplicated tests, and gaps in patient care.

2. Interoperability Issues: Different healthcare organizations use various electronic health record (EHR) systems like Epic electronic health record, charm electronic health records and Cerner electronic health record, which are not always compatible. This lack of standardization makes it difficult to share data seamlessly across platforms.

3. Privacy and Security Concerns: The healthcare industry handles sensitive patient information. The risk of data breaches and unauthorized access creates reluctance among institutions to share data freely.

4. Regulatory and Compliance Barriers: Strict regulations like HIPAA (Health Insurance Portability and Accountability Act) in the US and GDPR (General Data Protection Regulation) in Europe mandate stringent data protection measures. While these regulations are essential for protecting patient privacy, they can also hinder data sharing.

5. Resistance to Change: The healthcare industry can be slow to adopt new technologies, and some providers may be resistant to changing their workflows to incorporate healthcare data analyst insights and data-sharing solutions data-sharing solutions.

Technological Innovations Transforming Data Sharing in Healthcare

By employing innovative tools and strategies, the industry can close the gap between isolated data systems and foster a more connected, efficient, and secure environment for patient care. Here’s a look at the key technological techniques making this possible:

  1. Interoperability Standards: Technologies like Fast Healthcare Interoperability Resources (FHIR) and Health Level 7 (HL7) are setting the foundation for seamless data exchange between different healthcare systems. These standards ensure that patient information can be shared across platforms without compatibility issues, eliminating data silos and enabling better coordination of care.
  2. Blockchain Technology:  According to a Deloitte report, 55% of healthcare executives consider blockchain a top-five strategic priority for enhancing data integrity and security.Blockchain offers a decentralized, secure way to store and share electronic health records. Its tamper-proof nature ensures that data remains unaltered and trustworthy, which significantly boosts confidence among healthcare providers when sharing sensitive information. This technology is crucial for maintaining the integrity and security of health records. 
  3. Cloud Computing: Cloud-based platforms allow healthcare providers to store and access health records remotely, ensuring that patient information is available to authorized users at any time, from anywhere. This flexibility improves collaboration between different healthcare entities and helps streamline patient care, especially in multi-location healthcare systems.
  4. Artificial Intelligence (AI) and Machine Learning: AI-driven tools are revolutionizing the way healthcare data is processed and shared. These technologies can standardize vast amounts of data, identify patterns, and enable predictive analytics. By automating data sharing and analysis, AI and machine learning reduce the burden on healthcare providers and improve decision-making processes.
  5. Telemedicine and Internet of Things (IoT): The rise of telemedicine and IoT devices has expanded the sources of digital health records. Wearable devices, remote monitoring systems, and telehealth platforms generate valuable patient information that can be shared in real-time with healthcare providers. This continuous flow of data allows for timely interventions and personalized care, bridging the gap between patients and providers.
  6. Health Information Exchanges (HIEs): HIEs facilitate the secure sharing of patient information among different healthcare providers. By connecting various systems, HIEs ensure that patient data is accessible where and when it’s needed, enhancing continuity of care across different providers and locations.
  7. Data Encryption and Anonymization: To address privacy concerns, data encryption and anonymization techniques are used to protect sensitive patient information. These methods ensure that data can be shared securely without compromising patient privacy, balancing the need for data access with stringent privacy regulations.
  8. Standardization of Data Formats: The adoption of standardized data formats, such as FHIR, allows for consistent and seamless data exchange across different platforms. This standardization reduces interoperability issues and ensures that healthcare providers can access and utilize patient data more efficiently.
  9. Collaboration and Partnerships: Collaboration between healthcare providers, technology companies, and regulatory bodies is crucial for overcoming data-sharing challenges. Initiatives like the CommonWell Health Alliance and the Sequoia Project are creating nationwide networks for data sharing, demonstrating the power of partnerships in advancing healthcare technology.
  10. Patient-Centered Approaches: Empowering patients to take control of their own health data is another technique used to bridge the gap. Through patient portals and apps, individuals can access their health records and share them with healthcare providers as needed. This not only improves patient engagement but also ensures that providers have the information they need to deliver optimal care.

Conclusion: The Path Forward

Bridging the data-sharing gap in healthcare is essential for improving patient outcomes, enhancing public health, and advancing medical research. While significant challenges remain, the combination of technological innovations and collaborative efforts is paving the way for a more integrated and efficient healthcare system.

As we continue to adopt and refine these technological techniques with the vision of a fully connected healthcare ecosystem, where data flows freely and securely between stakeholders and becomes increasingly attainable. By embracing these innovations and fostering partnerships, we are setting the stage for a future where healthcare is not only more accessible and personalized but also more proactive in addressing the complex challenges of tomorrow. The path forward is clear: by closing the data-sharing gap, we can unlock the full potential of healthcare and ensure better outcomes for all.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot