Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

How Behavioral Psychology is Fixing Modern Insurance Claims

3 minutes, 56 second read

Human Behavior is inherently hard to predict and mostly irrational. Infact, this irrationality is often overlooked because it offers no meaningful insight or patterns behind our motivations. 

In the early 70’s, Israeli-American economist Daniel Kahneman challenged the assumption that humans behave rationally when making financial choices. His research explored the fundamentals of how people handle risk and display bias in economic decision-making. He would later be awarded the Nobel Prize for his pioneering work which provided the basis for an entirely new field of study called Behavioral Economics

Standard Economics assumes humans behave rationally, whereas Behavioral economics factors in human irrationality in the buying process.

Along with another scientific approach to studying natural human behaviors (Behavioral Science), both these fields became particularly useful to the financial industry early on. By understanding the deep seated motivations behind people’s choices, a specific interaction can be designed to influence an individual’s behavior — also known as behavioral intervention.

By finding meaningful patterns in Big Data, usually performed by a data scientist, businesses are able to leverage analytics and behavioral customer psychology. The outcomes of these insights can help business owners learn about the customer’s true feeling, explore behavioral pricing strategies, design new experiences and retain more loyal buyers. This is why Behavioral Scientists have become highly sought after over the last decade. 

The Rise of the Behavioral Scientist

Take for instance Dan Ariely, who is a Professor of Psychology & Behavioral Economics at Duke University, and also serves as the Chief Behavioral Officer of Lemonade — the World’s biggest Insurtech. Ariely observes that human behavior is ‘predictably irrational’ and constantly exhibits ‘self-defeating’ characteristics. There is a lot of value in studying these behaviors, for many organizations, to encourage positive ones, dissuade dishonesty and improve the underlying relationship.

The ‘dissuading dishonesty’ part is particularly useful for Insurance carriers. For a business that fundamentally deals with both people and risk, Insurance is endlessly plagued by fraud. Insurance fraud losses were estimated around $80B in 2019 alone. On the other hand, legitimate claim instances can at times be overlooked due to the lack of evidence or nuances in the finer policy details. 

To combat fraud during the claims process, Ariely added a simple ‘honesty pledge’ agreement before the beginning of the claims intimation process. A customer signs the digital pledge, and is then asked to record a short video explaining the incident for which they are requesting the claim.

The process seems naive but it’s backed by tons of data and science — a byproduct of decades of research work put into psychology and behavioral economics. 

So, How are claims being driven by data science?
How do insurers capture honesty from their customers?
The answer is priming.

By enforcing an honesty pledge, Lemonade was able to bring down the likelihood of fraudulent claims being intimated for. In other words, they made it harder for customers to lie. The hypothesis that works is: Don’t blame people for mistakes in decision making, it’s on the designers of the system

After the customer got done with their video recording, Lemonade ran 18 anti-fraud algorithms against the claim to check its veracity and a payment was made in a few seconds. 

Behavioral Priming in Insurance

Behavioral work is built on strong academic research that identifies aspects that influence the  buying process. ‘Nudges’ are a perfect example of behavioral priming at work. Nudge theory (a concept within Behavioral Science) identifies positive reinforcement techniques as ways to influence a person’s behavior and ultimately their decision-making.

For example, according to a study published in the Journal of Marketing Research, research subjects who were shown an aged image of their faces allocated twice the amount to their retirement savings when compared to people who were shown images of their current younger selves.

In this case, the ‘nudging’ technique was effective in driving retirement planning behavior among the test group. 


Source: Centre for Financial Inclusion

Behavioral Economics also stipulates that once you start doing something, you are more likely to continue doing so. This is how Netflix uses subtle nudges on their platform, where after each episode a prompt asks if you would like to continue watching the show.

Deriving New Value

Swiss Re’s Behavioural Research Unit outlines five promising areas where behavioral economics can create new value for insurers.

Digital businesses are gradually realizing the limitations of human and machine systems without any real intelligence or computing power behind it. Between human prone errors and the scalability challenges of traditional technologies, a new mechanism is required to learn and adapt better. 

Behavioral Science interventions in insurance can help carriers align their strategies with the true needs of their customers. Using the insights posited from advanced machine learning models, the right behavioral intervention can bring about changes to real-world insurance demand behavior that closely matches the benchmark model.

Also read – how InsurTech beyond 2020 will be different?

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot