Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Why automate insurance agent onboarding?

Globally, over 90 percent of agents leave their organization to pursue opportunities outside the insurance industry. Thus making the agents onboarding process a continual recurrence for the insurance companies. 
Organizations, as well as agents, crave for easy onboarding instead of long trails of paperwork. Simplifying documentation and data entry right from the beginning can be a great win for organizations looking to improve operational efficiencies. And it is, in fact, possible to automate insurance agents onboarding processes.

Problems In Onboarding Insurance Agents

#Finding the Right Person

One of the major problems that insurance companies face is the agent’s intent towards making profits. There sure is the pressure of earning commissions forcing agents to sell policies that bring greater profits to them. 

Insurance companies indeed need to find agents aligned with organizations’ ethics and not driven by personal benefits.

#Operational Cost in Recruitment

When an organization issues a circular for hiring agents, thousands of applications flood in. The human effort in shortlisting candidates is time-consuming and can increase operational costs by 30%-60%.

Automating ‘Traditional Onboarding’ Processes

Organizations can introduce an “apply online” portal where prospective agents can upload documents directly required for employment qualifications. Post this, the shortlisting of candidates can be automated, which is otherwise done manually even today.

Process flow: Automate Insurance Agents Onboarding - Mantra Labs

#Check Authenticity of the Submitted Documents

Smart document scanners identify the authentication rules (holograms, unique id, etc.) and accordingly process it for the next steps.

#Sort and Cluster Documents

Document Classifiers can cluster documents based on their titles, IDs, and specific content within the document text, and structure the data in a relational/hierarchical repository.

This is equivalent to arranging agent documents in a paperless register with lightning-fast access for future references.

#Derive Target Data

The OCR Engines and Document Parsers can read and capture text from documents and store them in the required format.

A manual process will require reading the document, entering data in a register, and then calculating it. Sounds tedious (even if it’s on excel sheets), isn’t it?

#View Results According to the Selection Criteria

Dashboards allow viewing the output in a decision-ready format.

MaxBupa, a leading health insurer uses an automated solution to process inbound documents for qualifying insurance agents into their distributed-sales network. 

Organizations can use some or all of these tools depending on how much they want to automate insurance agents onboarding. Custom workflow automation tools are available for enterprizes, and tailor-made considering the sophistication of the insurance industry.

For customized insurance agent onboarding software solutions, feel free to contact us at hello@mantralabsglobal.com

webinar: AI for data-driven Insurers

Join our Webinar — AI for Data-driven Insurers: Challenges, Opportunities & the Way Forward hosted by our CEO, Parag Sharma as he addresses Insurance business leaders and decision-makers on April 14, 2020.

Agents (humans) are important too

The traditional model of agent-to-customer communication is not dead. 57% of Indian customers still prefer buying insurance policies through agents. Many a time, agents are the touchpoint between customer portal (technology) and the customer. 

From an organization’s perspective, automated systems also ensure effective data management, which gives their agent easy access to customer information and company policies and documents; bridging the knowledge gap.

By automating about 30% of resource-intensive manual processes, insurance companies can cut about 40% operational cost.

Why to Automate Insurance Agents Onboarding?

Removing the unnecessary layers of complexity and automating processes can help insurance companies interact with more potential agents and set stricter selection criteria.

Successful onboarding can help establish a strong relationship between agents and insurance companies. According to research from Brandon Hall Group, organizations with an efficient onboarding process can improve new-hire retention by 82%. Also, finding the right person for your organization can improve the agents as well as overall enterprises’ productivity by 70%.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot