Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Amazon EC2 instances and comparison

Amazon is the market leader in cloud solution and it offers customers a wide range of EC2 instances.
Amazon Elastic Compute Cloud (Amazon EC2) is one of the most widely used services of AWS. This service is used to create and use virtual machines as service.

Most of the time when we require a virtual machine we just for T2 instance type which is meant for the general purpose. But AWS also provides a wide range of EC2 instance types which are meant for specific reasons.

General Purpose instances T2 M5 M4
Compute Optimized C5 C4
Memory Optimized X1e X1 R4
Accelerated Computing P3 P2 G3 F1
Storage Optimized H1 I3 D2

T2

Use Case: Websites and web applications, development environments, build servers, code repositories, microservices, test and staging environments, and line of business applications.

M5

Use Case: Small and mid-size databases, data processing tasks that require additional memory, caching fleets, and for running backend servers for SAP, Microsoft SharePoint, cluster computing, and other enterprise applications.

M4

Use Case: Small and mid-size databases, data processing tasks that require additional memory, caching fleets, and for running backend servers for SAP, Microsoft SharePoint, cluster computing, and other enterprise applications.

C5

Use Case: High-Performance web servers, scientific modeling, batch processing, distributed analytics, high-performance computing (HPC), machine/deep learning inference, ad serving, highly scalable multiplayer gaming, and video encoding.

C4

Use Case: High performance front-end fleets, web-servers, batch processing, distributed analytics, high performance science and engineering applications, ad serving, MMO gaming, and video-encoding.

X1e

Use Case: High-Performance databases, in-memory databases (e.g. SAP HANA) and memory intensive applications. x1e.32xlarge instance certified by SAP to run next-generation Business Suite S/4HANA, Business Suite on HANA (SoH), Business Warehouse on HANA (BW), and Data Mart Solutions on HANA on the AWS cloud.

X1

Use Case: In-memory databases (e.g. SAP HANA), big data processing engines (e.g. Apache Spark or Presto), high performance computing (HPC). Certified by SAP to run Business Warehouse on HANA (BW), Data Mart Solutions on HANA, Business Suite on HANA (SoH), Business Suite S/4HANA.

R4

Use Case: High-Performance databases, data mining & analysis, in-memory databases, distributed web scale in-memory caches, applications performing real-time processing of unstructured big data, Hadoop/Spark clusters, and other enterprise applications.

P3

Use Case: Machine/Deep learning, high performance computing, computational fluid dynamics, computational finance, seismic analysis, speech recognition, autonomous vehicles, drug discovery.

P2

Use Case: Machine learning, high performance databases, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, genomics, rendering, and other server-side GPU compute workloads.

G3

Use Case: 3D visualizations, graphics-intensive remote workstation, 3D rendering, application streaming, video encoding, and other server-side graphics workloads.

F1

Use Case: Genomics research, financial analytics, real-time video processing, big data search and analysis, and security.

H1

Use Case: MapReduce-based workloads, distributed file systems such as HDFS and MapR-FS, network file systems, log or data processing applications such as Apache Kafka, and big data workload clusters.

I3

Use Case: NoSQL databases (e.g. Cassandra, MongoDB, Redis), in-memory databases (e.g. Aerospike), scale-out transactional databases, data warehousing, Elasticsearch, analytics workloads.

D3

Use Case: Massively Parallel Processing (MPP) data warehousing, MapReduce and Hadoop distributed computing, distributed file systems, network file systems, log or data-processing applications

Mantra Labs is the technical partner with AWS to help our customers of all sizes design, architect, build, migrate, and manage their workloads and applications on AWS.

For more information, please write us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot