Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

AI to control solar panels, and enable power sharing? How US Energy Sector startups are leading the AI race

As the global energy landscape evolves to meet the necessities of climate change and burgeoning demand, Artificial Intelligence (AI) and Machine Learning (ML) are rapidly emerging as linchpins for sustainable energy solutions. The nexus between these advanced technologies and energy sustainability is not merely theoretical but manifests in real-world applications, driving tangible benefits. The global AI market in the energy sector is predicted to reach a staggering $19.2 billion by 2028, and the potential of AI to unlock $1.6 trillion in savings by 2030, underpins the seismic shift underway. This transition is not just an indicator of optimized energy management and reduced greenhouse gas emissions but also a fertile ground for startups to innovate and contribute to a more sustainable, efficient, and resilient energy ecosystem.

The Energy Sector in the USA is Booming At a Rapid Pace

The energy sector stands at the cusp of a transformative phase, with AI and ML being the vanguards of this transformation. 

The global AI market in the energy sector is set to ascend at a CAGR of 25.1%, reaching a valuation of $19.2 billion by 2028, a testament to the growing affinity towards AI-driven solutions. The prowess of AI extends to a potential saving of $1.6 trillion for the global energy sector by 2030, embodying the financial prudence of embracing AI.

In terms of efficiency and sustainability:

What AI Can Do for the Energy Sector in the USA?

A few years back, no one knew how AI could be used in the US energy sector. Now, however, we have pretty splendid examples of companies using AI to enhance the customer experience and sustainability further. Let’s go through a few examples.

Customer Experience

AI is still in its infancy and there’s a lot to come. However, thanks to tech partners like Mantra Labs, energy companies in the US are able to leverage modern technology to enhance their customer experience exponentially. GreenBrilliance (a leading solar panel installer in the US) is one such example. The solution developed by GreenBrilliance helps customers know how many solar panels will be required to power a house, how much power does a solar panel produce, and more. Further, it would help them monitor, control, and troubleshoot their solar panels on their smartphones.

Customer experience is one such thing that has started getting attention in the last few years. B2C companies, irrespective of their industry, not only build products or render services but try to provide the best customer experience possible. Reports predict that Solar could fulfill 40-50% of U.S. electricity demand by 2050. Also, the cost of installing and servicing solar panels has also been reduced by 60% over the last decade. This has been possible only through implementing automation, simplifying operations, and bringing transparency to the customer, along with many other things. 

Efficiency and Sustainability

Efficiency and sustainability are the USPs of solar power and AI is helping to boost that further. 

For example, accurate demand forecasting is pivotal for energy efficiency and cost-effectiveness. Startups like GridX are leveraging AI to predict energy demand and optimize power flows, thereby reducing energy costs and enhancing system efficiency.

Companies like Power Ledger are using AI systems to modernize and decentralize grid systems, enabling efficient trade of solar power among neighbors. This fosters a balanced supply and demand, optimized power flows, and improved grid reliability. Moreover, AI-driven innovative energy storage solutions are instrumental in integrating renewable energy into the grid and enhancing energy security.

These diverse applications underscore the boundless potential of AI and ML to revolutionize the energy sector, making it more sustainable, efficient, and resilient.

What Future AI Promises to the US’s Energy Sector?

As AI technology continues to evolve, the horizon of possibilities in the energy sector broadens. Large corporations like Google, Amazon, and Microsoft, alongside agile startups, are exploring the AI energy landscape continuously, indicating a robust and growing ecosystem.

And it’s not only the private sector that is putting effort into harnessing the power of AI. The US Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and other governmental bodies are also leveraging AI to pioneer new generations of nuclear reactors, develop new solar and wind technologies, and create smart grid systems.

Integration of AI and ML with the energy sector is a narrative of innovation, sustainability, and vast potential. The journey of companies like Green Brilliance Predictum, Heliogen, GridX, Amperio, and Power Ledger illustrates the transformative power of AI and ML in forging a sustainable energy future. As the global AI market in the energy sector burges, the call for startups to innovate and contribute to this burgeoning ecosystem is loud and clear. The narrative of AI and ML in the energy sector is still being written, and startups have a golden opportunity to be the authors of many success stories in this narrative.

Further Readings: Bringing Solar Renewable Energy Closer to Consumers in the USA

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot