Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

5 Innovative Applications of AI in Recruitment

4 minutes, 4 seconds read

The growing gig economy has added a new challenge to the organizations’ recruitment settings. While 62% of millennials believe gig work is a viable alternative to mainstream jobs (Deloitte Global Millennial Survey 2019), only 8% of HR Organizations believe they’re ready to manage gig or contract workers; thus opening new avenues for the use of technology in recruitment processes. Let’s see how AI in recruitment can benefit organizations in upscaling candidate experience, diversity and inclusion, and onboarding irrespective of geographical location.

How Organizations Can Leverage AI in Recruitment?

According to Grand View Research, the global HR management market is projected to reach $30.01 billion by 2025, of which Talent Management software will cover $13.8 billion worth of the market share. Advanced analytics, apps, and team-focused management practices will fuel the growth of recruitment technologies. The following are 5 areas where AI can out rule existing technologies and HR software.

#1 Screening

Identifying the right candidate from a large applicant pool terrifies recruiters. Surprisingly, only 9% of organizations possess a strong screening technology, says Josh Bersin in HR Technology Market 2019. According to Ideal’s recruiting software ebook, almost 65% of resumes received for a high-volume role are ignored. Now that the inclination towards an alternative workforce is growing, HRs face additional pressure in shortlisting candidates for the organizations. 

In the age where candidates have equal rights to question employers, automated responses aren’t just enough. AI-powered chatbots can not only automate the resume screening processes but also understand the candidates’ queries better and respond in real-time. 

For example, Olivia developed by Paradox is a recruitment assistant chatbot. It helps companies in collecting resumes, screening them, and interacting with the candidates. Olivia bot can schedule interviews and delivers one-to-one candidate experience. 

#2 Identifying Passive Candidates and Rediscovery

According to Deloitte Global Human Capital Trends Survey 2019, 61% of organizations consider finding qualified experienced hires as the most difficult recruitment challenge. Also, 26% of leading recruiters believe- inefficient technology is the reason for hiring setbacks.

Organizations rely on the capabilities of their existing workforce more than a new-hire. However, uncovering the talent that’s a great fit for a new role and their willingness to take up a new responsibility is quite a challenge. AI can help in rediscovering hidden talent among the existing employees thus reducing candidate acquisition costs. 

Another aspect of recruitment, especially for sophisticated roles is passive candidate sourcing. However, identifying and engaging with people who are not currently looking for a job change can be daunting. AI can simplify this aspect as well. Instead of focusing only on a candidate’s resume, sourcing more information from his public profiles and making predictions about the success in acquisition can save a lot of human efforts. 

#3 Sentiment Analysis

AI can judge a candidate’s sentiments better than a human because there won’t be any conflict of emotions during an interview. AI can identify, extract, quantify, and study the candidate’s states using procedures like NLP (natural language processing), computational linguistics, facial recognition, and biometrics. 

Through AI, companies like Unilever, IBM, Dunkin Donuts, and many others are analyzing a candidate’s facial expressions during video job interviews. For instance, using the HireVue AI-driven recruitment platform, Unilever was able to hire for entry-level jobs from 1200 more colleges.

#4 Defining Jobs APIs

Deloitte Global Human Capital Trends Survey 2019 reports – 25% of organizations feel constructing an appealing job offer as challenging. Moreover, according to HRDrive 2016 survey, 72% of HR managers claim to provide clear job descriptions. But, only 36% of candidates say they understood it.

AI can bridge this gap by mapping industry jargon and search queries. AI can also present descriptive job descriptions or skills requirements in concise language that can save the candidate’s time and hence improve conversions.

On 15th November 2016, Google launched Cloud Jobs API- a machine learning service to improve the hiring process by providing a lingua franca between the job seeker and employer job postings. It comprises of two ontologies- occupation and skills and establishment of relational models between them. 

#5 Reducing Unconscious Bias

Organizations believe that a diverse workforce improves employee productivity, and retention and yields innovation and creativity. However, diversity hiring suffers a setback because of unintentional bias and recruitment preferences. 

AI can help in reducing unconscious biases during recruitment because it is completely programmable. The model can be trained to clear patterns of potential prejudices based on gender, ethnicity, geography, or even academic institutions. According to Modern Hire research, 49% of candidates believe AI can improve their chances of getting hired.

Will AI Replace Recruiters?

PayScale suggests that 66% of organizations agree that employee retention is a growing concern, making hiring an even more sophisticated process. Benefits of AI in recruitment encircles around sourcing, screening, assessment, and identifying hidden talents. Technocrats believe AI will not replace recruiters, it will simply augment the existing hiring processes. 

We are an AI-first products and solutions firm; feel free to reach us out at hello@mantralabsglobal.com for your industry-specific requirements.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot