Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Your Shopping Cart just got a whole lot Smarter, this festive season

7 minutes, 7 seconds read

The shopping season has officially returned to the Indian subcontinent. While the first phase of festivities (typically) kicks off with the onset of Navratri (sep 29) till Dussehra (oct 8), Indian retailers will have clocked above 40% of their annual sales within this ten day window alone. For consumers, ‘better deals’ take precedence over attributes like faster shipping during this season. In fact, retailers will have adjusted their pricing to strongly reflect these consumer preferences — a pair of women’s running shoes, for instance, will have a discounted price of 19% pre-diwali and upto a flat 50% discounted price on the day of. 

In a country with over 400M active online users, customer fealty during this season is even more fickle than usual. The growing number of online consumers are heralding new buying behaviors especially from tier 2 and 3 cities. According to Google Insights, 70% of Indian netizens go online during the festive season to browse products, compare prices, read reviews and look for deals. For brands & retailers, getting in front of these potential customers and clamoring for their attention is the pivotal moment of truth. 

Amazon and Walmart-owned Flipkart, India’s top two e-tailers, are using intelligent technologies to stave off each other’s aggressive discounting strategies. The two e-commerce giants have cumulatively created over 140,000 temporary jobs across supply chain, last-mile connectivity and customer support to handle the extra influx of trade. Daily shipments in India is expected to touch 4 million units during the ongoing festive season.

AI in e-commerce:India's e-retail market share of gross merchandise value.

Which begs the question: How are they doing this? How are they using technology to stay-on-top?

It’s no secret, the retail spend on AI is forecast to grow from $2 billion in 2018 to $7.3 billion by 2022, according to Juniper Research.
In reality, they rely on Artificial Intelligence — it is where these companies have primarily invested a huge chunk of change to enhance their business. By leveraging the right set of AI-assisted tools in their operations, they are able to retain and convert more customers. 

Artificial Intelligence and related technologies like machine learning and natural language processing has intensified over the digital buying landscape. This has forced brick & mortar stores including physical outlets with omni channel reach to a receding corner of the industry.

There’s more to the digital landscape than meets the eye. It is a space plagued with security concerns. E-commerce companies are using AI to detect and eliminate potential frauds on their platform. They’ve deployed AI models that constantly vets fraudulent accounts that have only signed up to make the most of promo codes, or bring cash out of stolen credit cards. 

Yes, aggressive pricing does work as reflected by the higher EMI adoption this year. However, cash burn through discounts is not the overhaul the industry can sustain itself on. Big Data Analytics can prescribe a more proactive approach for suggestions based on statistical association evaluation, time spent on site, cookies behavior and method of accessing site which can tell a brand the how, what and when of the customer buying cycle — in turn, increasing sales.

AI has even infiltrated physical retail, and is now helping stores maximise marketing efforts, personalise the customer experience and optimise their store inventory.

AI in retail market

Warehouses and stores, in India, are also making use of ‘Cobots (collaborative robots) to assist humans in performing tedious and repetitive shop-floor tasks. The cobots run on machine learning algorithms that have defined its capacity to perform specific tasks while also learning to get better with new data.

Ahead of this year’s festive sale, Flipkart has added 340 cobots or automated guided vehicles (AGVs) to its current fleet of 110. These bots can carry anything with them, from appliances to mobile phones. 

After the first phase of the festive shopping marathon, Amazon and Flipkart have both made significant wins over the period. They will look to extend their market capture as we move into the second phase of the season (Diwali).

Interestingly, for Amazon, almost half the product sales came from lower-tier urban areas. Amazon India-owned Echo products even saw a record 70 fold increase in sales.

Flipkart receives over 90% of traffic from its android app, and has designed its app home screen personalized to each of its 120 million+ customers. They have deployed machine learning models and algorithms on various customer data points like customer location, language, gender, price, affinity to a store or brand, purchasing frequency, purchase volume, price group, etc. among others.

These data points help Flipkart make predictions even without the customer being on their platform. Using these machine learning models they are also able to predict if a customer is going to return a particular product.

This season, customers can continue to expect strides in personalization and tailored experiences. E-tailers can expect to see improvements to their order handling, and personalization efforts. Overtime, these improvements will pay dividends in the form of revenue enhancement, increased margins, and higher sales.

How can AI upscale e-commerce

AI has made smooth inroads into digital shopping aisles — with several intelligent use cases such as stock assortment, fraud reduction and self-checkout. Here is a brief compilation of adopted strategies used in retail with the potential to disrupt the future of online shopping.

Product Recommendations

Recommendation engines have become a staple of commercial AI usage. By looking at customers’ purchase histories, current activity (cart contents and page views), and other linked third-party data, e-tailers can make highly tailored suggestions. Amazon, for example, makes more than 40% of its sales via their recommendation engine which also suggests items based on what your friends have purchased recently.Demand Forecasting
E-tailers expect to know in advance how much of each product is projected to especially during peak season. AI can enhance demand predictions by minimizing overstock and out-of-stock situations. ML Algorithms can optimise what products should be made available in a particular geography. For example, Levi’s is using AI to improve size availability, and Nike is using geographical and behavioural data from its app to inform store offerings.

Personalization

AI systems can capture deep customer insights about their buying preferences and behavior using their social data, purchase history, and browsing habits. AI can fill in the gaps by looking at a user’s spending patterns and other data sources to come up with a very detailed view of the customer. This has proven to enhance the customer’s digital shopping experience with a more satisfying view of highly relevant and hyper-personalized offerings.

Shopping Assistant

An AI-powered shopping assistant is a natural extension of the chatbot, with layers of visual processing added in. For example, if a customer wants to choose an outfit for a special occasion. The AI shopping assistant could learn their tastes and help them select some garments. It could then walk them through the process of virtually trying on an outfit (virtual trial rooms). It could offer suggestions for complementary items or encourage them to buy the product, as a friend might. The shopping assistant can also suggest the complementary outfits, footwear and accessories just like a real fashion assistant/advisor would.

Swift Customer Service

Primarily dominated by chatbots over the last several years, bots can learn from the interactions between customers and human reps. Chatbots are trained using natural language processing techniques to understand jargon and ‘speech’ specific to retail. They can then use the data it harvests to create a more personable interaction. It can also quickly reduce the number of touchpoints for the customer and help address immediate queries related to pricing, product availability, returns and recommendations without the need for human intervention.

Also read – How Chatbots are changing the digital Indian?

Smarter Voice Searches

Voice-powered searches can act on a ton of customer insights and information fed into the recommendation engine from the customer’s profile. Voice-activated shopping, is a natural extension of human behavior — allowing consumers to take control of the omnichannel experience to learn more about the product, gather quick product information, compare prices etc. Orders placed via Alexa have increased three times more than the year-ago festive shopping season.

esearch has shown customers who gravitate towards voice-powered searches, equally embrace visual searches. For example, an AI-powered matching algorithm could look at the images of a customer’s favorite products (shirts, sneakers etc.) and suggest similar ones based on attributes like pattern, fit, color, style etc. The AI program can also identify products kept in cart and website pages from browsing based on the customers’ past shopping data and other data from various sources, making the suggestions more accurate with time.

To know more about how Artificial Intelligence can help increase your persona capture and retention, reach out to us on hello@mantralabsglobal.com.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot