Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

The Next Big Thing for Big Tech: AI as a Service

4 minutes, 9 seconds read

The biggest challenge with AI practitioners (so far) is to find a considerable volume of relevant data to feed machine learning algorithms. And nobody ever thought that this problem would be resolved in the blink of an eye. 

With huge data repositories, the crowned tech giants —  Amazon, Google, Microsoft, Apple, IBM, Salesforce, SAP, Oracle, Alibaba and Baidu have become the AI leaders of today. Their next venture into AI as a Service (AIaaS), adequately powered by Data as a Service is, yet again, prone to disrupt Digital. 

How will AI as a Service impact businesses?

Organizations may have centuries-old data with them, and they might even invest in digitizing all historic data to generate volume. But, is this data a good fodder for machine learning models? Certainly not. Consumers today are way different from yesterday. What the world needs is real-time data. And who has it? The aforementioned AI leaders, who not only made efforts to collect data but also made arrangements to organize them and use them wherever, whenever. 

Today, Google Home has over half a billion users; meaning — there’s no scarcity of data. With this, Google cloud offers a range of AIaaS products like AI Hub — a repository of plug-and-play AI components; AI building blocks — to make developers utilize structured data into their applications; and an AI platform — a development environment to let data scientists and ML developers quickly take projects from ideation to deployment. 

The point is, the quest for quality data to train ML models is nearly over. The hunt for Machine Learning experts is seeing an end. Because with Google Cloud AutoML developers with limited ML expertise will be able to train their specific ML models. Similarly, Amazon SageMaker provides Managed Spot Training, which can reduce ML models’ training cost by 90%. This drastic cost reduction will encourage businesses to adopt AI at a larger scale; thus opening new avenues for innovations.

Is AIaaS different from MLaaS (Machine Learning as a Service)?

MLaaS is a set of services that offer ready-made Machine Learning tools. Organizations can utilize this as a part of their working needs. The popular MLaaS services available today are (mostly from Amazon, Google, Microsoft, and IBM)-

1. Natural language processing

2. Speech recognition

3. Computer vision

4. Video and image analysis

While ML corresponds to making machines learn by themselves, AI focuses on both the acquisition and application of information. AI is the process of simulation of natural intelligence to solve complex problems. AIaaS, thus, broadens the scope of MLaaS by enabling machines with cognitive capabilities.

We’re rapidly moving beyond the algorithms that were designed to deliver experiences based on predefined rules. “AI… is a group of algorithms that can modify its algorithms to create new algorithms in response to learned inputs…” (Kaya Ismail, CMSWire)

How will AI as a Service disrupt digital products and experiences?

  • With the commercialization of AI, most of the digital products will be equipped with AI.
  • The time-to-market for AI and ML-based products will reduce drastically.
  • AI-enabled products comply with connected data ecosystems, which enables effective organization and utilization of huge volumes of data.
  • AIaaS will deliver multi-layer insights to humans at a moment’s notice. 
  • It will smartly integrate different technologies (like AR) on-need basis.
  • Making sense of regional language data will be no more challenging.
  • Delivering intuitive experiences will become much simpler. For instance, the Google Translate app automatically takes input from the user’s device language settings and applies augmented reality experience to scanned images. 
  • It will connect the dots — IoT, Driverless cars, drones, hyperloop, and even space technologies.

[Related: The State of AI in Insurance 2020]

Getting the edge over operations for the next era of tech

Cloud is changing the AI marketplace and serverless computing is making it possible for developers to quickly get AI applications up and running. Also, the prime enabler of AI as a Service business is information services. The biggest change that serverless computing has brought is — it has eliminated the need to scale physical database hardware. For instance, Amazon Aurora extends the performance and availability of commercial-grade databases at 1/10th of the cost. To mention, Netflix moved its database to AWS to leverage the benefits of serverless computing. Another example of distributed infrastructure for data is that of Microsoft Azure Data Lake. It dynamically allocates or deallocates resources, enabling a pay-per-use model. 

While business benefits from AI as a Service are immense, the competition among AI Leaders is not less. Tech giants pour billions of dollars in AI research to shape the business of the future. What we see today is the outcome of decades of hardship and the quest to get the best minds to execute their AI strategy. 

Read the story – The Big Five of Tech are winning more often with AI — The AI race so far.

We are helping leading Insurers like Aditya Birla Health Insurance, Religare, DHFL Pramerica, and many more in their AI initiatives. Please feel free to talk to us for your AI strategy roadmap and implementation. Drop us a line at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot