Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(20)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

5 Insurance Front-Office Processes You Can Improve with AI

6 minutes, 5 seconds read

Amidst the growing footprint of Insurtech around the world, Insurance service models continue to evolve for both front and back-office processes. Currently, InsurTechs are using AI in three main areas: Customer Experience (58%), Product Innovation (43%), and Process Improvement (19%) — according to a McKinsey report. An organization’s ‘Front Office’ strategy will need to embody intelligent sales force automation, call-centre management, help-desk applications, product configuration and risk assessment tools. Insurance Carriers are restructuring these operations with an outward focus — aimed at improving interactions with their customers. 

While the Insurance back-office is focussed on streamlining in-house operations, the front office is responsible for driving customer experience, engagement and behaviour. However, most front-office operations deal with repetitive customer-facing jobs. Using Artificial Intelligence-based technologies such as RPA, tasks that require human mediation can now be handed over to automation technologies that imitate human interactions. Gartner estimates 20% of RPA will be cloud-based by 2022.

The real benefit of undergoing automation transformation is that both the front & back office can now be contextually linked in a smart manner — avoiding ‘working in isolation’ for extended periods. Customer-facing agents and reps can access information across the back-end more reliably and faster than before. Automating even routine tasks such as updating customer information, performing security checks, fetching product details or updating complaint forms — can reduce resolution times and the potential for manual errors.

This allows the front-office staff to focus on the most pressing matter — the relationship with the customer.

Customer servicing can now take place at incredible scale and complexity using chat, mobile and voice self-service tools. For example, speech recognition can capture what type of service to offer the customer (eg: update contact information, access policy details etc). These tools can also detect ‘anger’ or ‘frustration’ from the tone of voice and the information is passed to front-line reps who can quickly resolve an issue. As a result, remote diagnostics and self-service tools will see enhanced adoption over the coming years. The market for AI-enabled technologies in the claims process alone will be worth $72B by 2020.

5 key front-office operations that can be improved with AI

  1. Underwriting
    The most central function within the insurance value chain is to price risk. Using AI, the insurance underwriting process is now empowered with real-time insights derived from models analysis tons of customer-centric data.

    Using historical data, machine learning models can be trained to understand ‘known risks’ based on experience. For ‘unknown risks’, IoT sensors play a crucial role — by delivering a real-time picture of an ongoing operation. This allows for a second model to infer risk based on current data and the entire historical record of that specific process.

    Armed with in-depth knowledge about risk, insurers are moving from traditional risk pricing to a more proactive risk mitigation role. Through this new approach, carriers can set up real-time risk alerts, predict fraud and more accurately forecast ‘claims occurrence’ across the customer life cycle.

  2. Policy Administration
    A policy administration system is a backbone that manages all the policies within an insurance company. From the first point of interaction to fetching data from the back-office — most, if not all core operations run through this system. However, most insurance organizations still rely on legacy systems that require tremendous workaround using manual efforts.

    According to a study by Celent, nearly 45% of Insurance CIOs identified disconnected and duplicative legacy systems as a key inhibitor to digital transformation.

    Today’s challenging market dynamics and competitive pricing pressures are changing this approach. There are several areas worth investing in for carriers such as image & voice recognition to capture and authenticate customer information at the initial contact stage to intelligent entity extraction tools for understanding even handwritten text from a physical document.

    Automation enhancements help drive policyholder retention by improving connectivity to the back-end and delivering the most optimal outcomes for front-office workflows.

  3. Claims Management

    Claims are the most widely scrutinized function within the insurance value chain. Most claims servicing is performed by human agents over the phone. With speech recognition, these conversations can be automatically transcribed/ translated in real-time. This frees up more agent time to handle greater issues while leaving automation enabled self-service to handle the most basic customer queries.

    Claims assessment or loss estimation itself can be performed remotely using image recognition tools linked to algorithms that can calculate the payout for the policyholder.

    Without the need for human intervention, straight-through processing can be dramatically improved by reducing processing time — allowing human agents to react faster to policyholders demands.

    Also, read – How AI can settle claims in 5 minutes!

  4. Marketing & Sales Distribution
    According to Salesforce, only 36% of the average salespersons’ week is spent selling. Human sales reps typically spend a large portion of their time nurturing unqualified leads. With sales funnel maximizers, like LCA, reps can get quick access to leads that have been scored, prioritised and allocated for the right agent to optimize conversions.

    Distribution and sales chains are moving to a completely digital and affinity-based ecosystem. Chatbots and virtual agents can, therefore, play a critical role in increasing cross-sell and up-sell opportunities. These AI-enabled tools are fitted with Natural Language Processing (NLP) capabilities to contextually interpret the interaction with the customer.

    AI also leverages predictive analytics to produce behavioural insights when pitching the customer — allowing the agent to ask the right questions, address unmet needs and resolve anticipated near-term challenges.

  5. Product Personalization
    Using Machine Learning algorithms to precisely price risk, allows Carriers to understand the complexities involved in new product development — especially measuring the ‘unknown risks’ involved in creating new product lines.

    Data (both historical and IoT derived) coupled with predictive analytics can offer more personalised guidance to insurance buying. InsurTechs are poising themselves strategically in this area, ahead of the large carriers, to attract a new and younger customer base. Companies like MetroMile, Trov and Lemonade have been able to create unique offerings with AI-derived insights fine-tuned to the individual, while also charging much lower premiums than the market.

    New customers are able to buy convenient, sachet-type, even pay-as-you-use modelled insurance products for protecting their assets (mobile, laptop, home appliances, short travel, vacations etc). This has brought about an appetite for on-demand insurance where insurance can be bought, queries can be resolved and claims can be processed, all within a few minutes.

Other Customer-Facing Areas improved by AI

1. Proactive Front-Office Processes 
2. Precise Risk Mitigation/Active loss prevention
3. Chatbots and Robo-advisors 
4. Real-time Underwriting 
5. Accurate Claims Processing 
6. Direct Marketing & Cu0stomer Retention
 7. Bespoke Insurance Advice
 8. Understanding User’s Emotions 

Forrester predicts the impact of intelligent automation — through evidence in ‘the service desk’. They claim: automation will eliminate 20% of all service desk interactions, by the end of 2019. Enabling human workers with digital assistants in the insurance front-office has scope for very high disruption. Human agents are prone to making repeat errors that automation equipped with AI can fix easily — especially in routine and repetitive tasks.

Carriers, now have the opportunity to boost their market position by improving agent productivity, reducing operational inefficiencies like reprocessing, producing errorless transactions for customers and thereby creating an uninterrupted service chain.
Mantra Labs solves the most challenging front & back-office operations plaguing the Insurance value chain. To know more about our work in this space, reach out to us on hello@mantralabsglobal.com.

Cancel

Knowledge thats worth delivered in your inbox

Conversational UI in Healthcare: Enhancing Patient Interaction with Chatbots

As healthcare becomes more patient-centric, the demand for efficient and personalized care continues to grow. One of the key technologies that have gained traction in this domain is Conversational UI (CUI) — a user interface where interactions occur through natural language, often with the help of chatbots. For developers, building a robust CUI in healthcare requires a balance of technical proficiency, understanding of the healthcare landscape, and empathy toward patient needs. Let’s explore how CUI can improve patient interactions through chatbots and what developers should consider during implementation.

Why Conversational UI is Gaining Popularity in Healthcare

From scheduling appointments to answering medical queries, healthcare chatbots have become vital tools for enhancing patient engagement and streamlining healthcare workflows. Conversational UIs enable these chatbots to interact with patients naturally, making them accessible even to non-tech-savvy users. By incorporating AI and NLP (Natural Language Processing), chatbots can now simulate human-like conversations, ensuring patients receive timely, relevant responses. 

Image credit: https://www.analytixlabs.co.in/blog/ai-chatbots-in-healthcare/ 

Key Areas Where Chatbots Are Revolutionizing Healthcare

  1. Appointment Scheduling and Reminders – Chatbots can automatically schedule appointments based on patient availability and send reminders before the visit, reducing no-show rates. For developers, this feature requires integration with hospital management systems (HMS) and calendar APIs. The challenge lies in ensuring secure and real-time data transfer while adhering to healthcare compliance standards like HIPAA.
  1. Medical Query Resolution– Chatbots equipped with NLP can answer common patient questions related to symptoms, medications, and treatment plans. This reduces the burden on healthcare providers, allowing them to focus on more critical tasks. Developers working on this feature need to consider integrating medical databases, such as SNOMED CT or ICD-10, for accurate and up-to-date information.
  1. Patient Monitoring and Follow-ups – Post-discharge, chatbots can monitor a patient’s condition by regularly asking for health updates (e.g., vital signs or medication adherence). Developers can integrate IoT devices, such as wearable health monitors, with chatbot platforms to collect real-time data, providing healthcare professionals with actionable insights.
  1. Mental Health Support – Chatbots have shown promise in offering mental health support by providing patients with an outlet to discuss their feelings and receive advice. Building these chatbots involves training them on therapeutic conversational frameworks like Cognitive Behavioral Therapy (CBT), ensuring they offer relevant advice while recognizing when a human intervention is required.

Key Considerations for Developers

1. Natural Language Processing (NLP) and AI Training

NLP plays a pivotal role in enabling chatbots to understand and process patient queries effectively. Developers must focus on the following:

Training Data: Start by gathering extensive datasets that include real-life medical queries and patient conversations. This ensures that the chatbot can recognize various intents and respond appropriately.

Multi-language Support: Healthcare is global, so building multi-lingual capabilities is critical. Using tools like Google’s BERT or Microsoft’s Turing-NLG models can help chatbots understand context in different languages.

Contextual Understanding: The chatbot must not just respond to individual queries but also maintain the context across the conversation. Developers can use contextual models that preserve the state of the conversation, ensuring personalized patient interactions.

2. Security and Compliance

Healthcare chatbots handle sensitive patient information, making security a top priority. Developers must ensure compliance with regulations such as HIPAA (Health Insurance Portability and Accountability Act) in the U.S. and GDPR (General Data Protection Regulation) in Europe. Key practices include:

  • Data Encryption: All communication between the chatbot and the server must be encrypted using protocols like TLS (Transport Layer Security).
  • Authentication Mechanisms: Implement two-factor authentication (2FA) to verify patient identity, especially for sensitive tasks like accessing medical records.
  • Anonymization: To avoid accidental data breaches, ensure that the chatbot anonymizes data where possible.

3. Seamless Integration with EHR Systems

For chatbots to be truly effective in healthcare, they must integrate seamlessly with Electronic Health Record (EHR) systems. This requires a deep understanding of healthcare APIs like FHIR (Fast Healthcare Interoperability Resources) or HL7. Developers should aim to:

  • Enable Real-time Updates: Ensure that chatbot interactions (e.g., new appointment schedules, and symptom checks) are instantly reflected in the patient’s EHR.
  • Avoid Data Silos: Ensure that all systems (EHR, chatbot, scheduling system) can communicate with each other, eliminating data silos that can lead to fragmented patient information.

4. Scalability and Performance Optimization

In healthcare, downtime can be critical. Developers need to ensure that chatbots are scalable and capable of handling thousands of patient interactions simultaneously. Using cloud-based platforms (AWS, Google Cloud) that offer auto-scaling capabilities can help. Additionally, performance optimization can be achieved by:

  • Caching Responses: Store frequently used responses (such as FAQs) in memory to speed up interaction times.
  • Load Balancing: Implement load balancers to distribute incoming queries across servers, ensuring no single server is overwhelmed.

Tools and Platforms for Building Healthcare Chatbots

Several tools and platforms can aid developers in building healthcare chatbots with conversational UIs:

  1. Dialogflow (Google): Offers pre-built healthcare intents and integrates with Google Cloud’s healthcare APIs.
  2. Microsoft Bot Framework: A scalable platform that integrates with Azure services and offers AI-driven insights.
  3. Rasa: An open-source NLP tool that provides flexibility in creating highly customized healthcare bots.

Conclusion

Conversational UI in healthcare is transforming patient care by offering real-time, scalable, and personalized interactions through chatbots. However, for developers, building these systems goes beyond programming chatbots — it involves understanding the unique challenges of healthcare, from regulatory compliance to seamless integration with hospital systems. By focusing on NLP capabilities, ensuring security and privacy, and integrating with existing healthcare infrastructure, developers can create chatbots that not only enhance patient interaction but also alleviate the burden on healthcare providers.

References

  1. NLP in Healthcare: Opportunities and Challenges
  2. HIPAA Compliance for Chatbots

About the Author:

Shristi is a creative professional with a passion for visual storytelling. She recently transitioned from the world of video and motion graphics to the exciting field of product design at Mantra Labs. When she’s not designing, she enjoys watching movies, traveling, and sharing her experiences through vlogs.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot