Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(44)

Solar Industry(8)

User Experience(67)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(146)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(21)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

10 Analytics Tools to Guide Data-Driven Design

Analytics are essential for informing website redesigns since they offer insightful data on user behavior, website performance, and areas that may be improved. Here is a list of frequently used analytics tools to guide data-driven design that can be applied at different stages of the website redesign process. 

Analytics Tools to Guide Data-Driven Design

1. Google Analytics:

Use case scenario: Website Audit, Research, Analysis, and Technical Assessment
Usage: Find popular sites, entry/exit points, and metrics related to user engagement by analyzing traffic sources, user demographics, and behavior flow. Recognize regions of friction or pain points by understanding user journeys. Evaluate the performance of your website, taking note of conversion rates, bounce rates, and page load times.

2. Hotjar:

Use case scenario: Research, Analysis, Heat Maps, User Experience Evaluation
Usage: Use session recordings, user surveys, and heatmaps to learn more about how people interact with the website. Determine the high and low engagement regions and any usability problems, including unclear navigation or form abandonment. Utilizing behavior analysis and feedback, ascertain the intentions and preferences of users.

3. Crazy Egg:
Use case scenario: Website Audit, Research, Analysis
Usage: Like Hotjar, with Crazy Egg, you can create heatmaps, scrollmaps, and clickmaps to show how users interact with the various website elements. Determine trends, patterns, and areas of interest in user behaviour. To evaluate various design aspects and gauge their effect on user engagement and conversions, utilize A/B testing functionalities.

4. SEMrush:

Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct keyword research to identify relevant search terms and phrases related to the website’s content and industry. Analyze competitor websites to understand their SEO strategies and identify opportunities for improvement. Monitor website rankings, backlinks, and organic traffic to track the effectiveness of SEO efforts.

5. Similarweb:
Use case
scenario: Research, Website Traffic, and Demography, Competitor Analysis
Usage: By offering insights into the traffic sources, audience demographics, and engagement metrics of competitors, Similarweb facilitates website redesigns. It influences marketing tactics, SEO optimization, content development, and decision-making processes by pointing out areas for growth and providing guidance. During the research and analysis stage, use Similarweb data to benchmark against competitors and guide design decisions.

6. Moz:
Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct website audits in order to find technical SEO problems like missing meta tags, duplicate content, and broken links. Keep an eye on a website’s indexability and crawlability to make sure search engines can access and comprehend its material. To find and reject backlinks that are spammy or of poor quality, use link analysis tools.

7. Ahrefs:
Use case scenario:
Research, Analysis, SEO Optimization

Usage: Examine the backlink profiles of your rivals to find any gaps in your own backlink portfolio and possible prospects for link-building. Examine the performance of your content to find the most popular pages and subjects that appeal to your target market. Track social media activity and brand mentions to gain insight into your online reputation and presence.

8. Google Search Console:

Use case scenario: Technical Assessment, SEO Optimization
Usage: Monitor website indexing status, crawl errors, and security issues reported by Google. Submit XML sitemaps and individual URLs for indexing. Identify and fix mobile usability issues, structured data errors, and manual actions that may affect search engine visibility.

9. Adobe Analytics:
Use case scenario:
Website Audit, Research, Analysis,
Usage: Track user interactions across multiple channels and touchpoints, including websites, mobile apps, and offline interactions. Segment users based on demographics, behavior, and lifecycle stage to personalize marketing efforts and improve user experience. Utilize advanced analytics features such as path analysis, cohort analysis, and predictive analytics to uncover actionable insights.

10. Google Trends:

Use case scenario: Content Strategy, Keyword Research, User Intent Analysis
Usage: For competitor analysis, user intent analysis, and keyword research, Google Trends is used in website redesigns. It helps in content strategy, seasonal planning, SEO optimization, and strategic decision-making. It directs the production of user-centric content, increasing traffic and engagement, by spotting trends and insights.

About the Author:

Vijendra is currently working as a Sr. UX Designer at Mantra Labs. He is passionate about UXR and Product Design.

Cancel

Knowledge thats worth delivered in your inbox

Lake, Lakehouse, or Warehouse? Picking the Perfect Data Playground

By :

In 1997, the world watched in awe as IBM’s Deep Blue, a machine designed to play chess, defeated world champion Garry Kasparov. This moment wasn’t just a milestone for technology; it was a profound demonstration of data’s potential. Deep Blue analyzed millions of structured moves to anticipate outcomes. But imagine if it had access to unstructured data—Kasparov’s interviews, emotions, and instinctive reactions. Would the game have unfolded differently?

This historic clash mirrors today’s challenge in data architectures: leveraging structured, unstructured, and hybrid data systems to stay ahead. Let’s explore the nuances between Data Warehouses, Data Lakes, and Data Lakehouses—and uncover how they empower organizations to make game-changing decisions.

Deep Blue’s triumph was rooted in its ability to process structured data—moves on the chessboard, sequences of play, and pre-defined rules. Similarly, in the business world, structured data forms the backbone of decision-making. Customer transaction histories, financial ledgers, and inventory records are the “chess moves” of enterprises, neatly organized into rows and columns, ready for analysis. But as businesses grew, so did their need for a system that could not only store this structured data but also transform it into actionable insights efficiently. This need birthed the data warehouse.

Why was Data Warehouse the Best Move on the Board?

Data warehouses act as the strategic command centers for enterprises. By employing a schema-on-write approach, they ensure data is cleaned, validated, and formatted before storage. This guarantees high accuracy and consistency, making them indispensable for industries like finance and healthcare. For instance, global banks rely on data warehouses to calculate real-time risk assessments or detect fraud—a necessity when billions of transactions are processed daily, tools like Amazon Redshift, Snowflake Data Warehouse, and Azure Data Warehouse are vital. Similarly, hospitals use them to streamline patient care by integrating records, billing, and treatment plans into unified dashboards.

The impact is evident: according to a report by Global Market Insights, the global data warehouse market is projected to reach $30.4 billion by 2025, driven by the growing demand for business intelligence and real-time analytics. Yet, much like Deep Blue’s limitations in analyzing Kasparov’s emotional state, data warehouses face challenges when encountering data that doesn’t fit neatly into predefined schemas.

The question remains—what happens when businesses need to explore data outside these structured confines? The next evolution takes us to the flexible and expansive realm of data lakes, designed to embrace unstructured chaos.

The True Depth of Data Lakes 

While structured data lays the foundation for traditional analytics, the modern business environment is far more complex, organizations today recognize the untapped potential in unstructured and semi-structured data. Social media conversations, customer reviews, IoT sensor feeds, audio recordings, and video content—these are the modern equivalents of Kasparov’s instinctive reactions and emotional expressions. They hold valuable insights but exist in forms that defy the rigid schemas of data warehouses.

Data lake is the system designed to embrace this chaos. Unlike warehouses, which demand structure upfront, data lakes operate on a schema-on-read approach, storing raw data in its native format until it’s needed for analysis. This flexibility makes data lakes ideal for capturing unstructured and semi-structured information. For example, Netflix uses data lakes to ingest billions of daily streaming logs, combining semi-structured metadata with unstructured viewing behaviors to deliver hyper-personalized recommendations. Similarly, Tesla stores vast amounts of raw sensor data from its autonomous vehicles in data lakes to train machine learning models.

However, this openness comes with challenges. Without proper governance, data lakes risk devolving into “data swamps,” where valuable insights are buried under poorly cataloged, duplicated, or irrelevant information. Forrester analysts estimate that 60%-73% of enterprise data goes unused for analytics, highlighting the governance gap in traditional lake implementations.

Is the Data Lakehouse the Best of Both Worlds?

This gap gave rise to the data lakehouse, a hybrid approach that marries the flexibility of data lakes with the structure and governance of warehouses. The lakehouse supports both structured and unstructured data, enabling real-time querying for business intelligence (BI) while also accommodating AI/ML workloads. Tools like Databricks Lakehouse and Snowflake Lakehouse integrate features like ACID transactions and unified metadata layers, ensuring data remains clean, compliant, and accessible.

Retailers, for instance, use lakehouses to analyze customer behavior in real time while simultaneously training AI models for predictive recommendations. Streaming services like Disney+ integrate structured subscriber data with unstructured viewing habits, enhancing personalization and engagement. In manufacturing, lakehouses process vast IoT sensor data alongside operational records, predicting maintenance needs and reducing downtime. According to a report by Databricks, organizations implementing lakehouse architectures have achieved up to 40% cost reductions and accelerated insights, proving their value as a future-ready data solution.

As businesses navigate this evolving data ecosystem, the choice between these architectures depends on their unique needs. Below is a comparison table highlighting the key attributes of data warehouses, data lakes, and data lakehouses:

FeatureData WarehouseData LakeData Lakehouse
Data TypeStructuredStructured, Semi-Structured, UnstructuredBoth
Schema ApproachSchema-on-WriteSchema-on-ReadBoth
Query PerformanceOptimized for BISlower; requires specialized toolsHigh performance for both BI and AI
AccessibilityEasy for analysts with SQL toolsRequires technical expertiseAccessible to both analysts and data scientists
Cost EfficiencyHighLowModerate
ScalabilityLimitedHighHigh
GovernanceStrongWeakStrong
Use CasesBI, ComplianceAI/ML, Data ExplorationReal-Time Analytics, Unified Workloads
Best Fit ForFinance, HealthcareMedia, IoT, ResearchRetail, E-commerce, Multi-Industry
Conclusion

The interplay between data warehouses, data lakes, and data lakehouses is a tale of adaptation and convergence. Just as IBM’s Deep Blue showcased the power of structured data but left questions about unstructured insights, businesses today must decide how to harness the vast potential of their data. From tools like Azure Data Lake, Amazon Redshift, and Snowflake Data Warehouse to advanced platforms like Databricks Lakehouse, the possibilities are limitless.

Ultimately, the path forward depends on an organization’s specific goals—whether optimizing BI, exploring AI/ML, or achieving unified analytics. The synergy of data engineering, data analytics, and database activity monitoring ensures that insights are not just generated but are actionable. To accelerate AI transformation journeys for evolving organizations, leveraging cutting-edge platforms like Snowflake combined with deep expertise is crucial.

At Mantra Labs, we specialize in crafting tailored data science and engineering solutions that empower businesses to achieve their analytics goals. Our experience with platforms like Snowflake and our deep domain expertise makes us the ideal partner for driving data-driven innovation and unlocking the next wave of growth for your enterprise.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot