Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(1)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(31)

Technology Modernization(8)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(149)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

10 Analytics Tools to Guide Data-Driven Design

Analytics are essential for informing website redesigns since they offer insightful data on user behavior, website performance, and areas that may be improved. Here is a list of frequently used analytics tools to guide data-driven design that can be applied at different stages of the website redesign process. 

Analytics Tools to Guide Data-Driven Design

1. Google Analytics:

Use case scenario: Website Audit, Research, Analysis, and Technical Assessment
Usage: Find popular sites, entry/exit points, and metrics related to user engagement by analyzing traffic sources, user demographics, and behavior flow. Recognize regions of friction or pain points by understanding user journeys. Evaluate the performance of your website, taking note of conversion rates, bounce rates, and page load times.

2. Hotjar:

Use case scenario: Research, Analysis, Heat Maps, User Experience Evaluation
Usage: Use session recordings, user surveys, and heatmaps to learn more about how people interact with the website. Determine the high and low engagement regions and any usability problems, including unclear navigation or form abandonment. Utilizing behavior analysis and feedback, ascertain the intentions and preferences of users.

3. Crazy Egg:
Use case scenario: Website Audit, Research, Analysis
Usage: Like Hotjar, with Crazy Egg, you can create heatmaps, scrollmaps, and clickmaps to show how users interact with the various website elements. Determine trends, patterns, and areas of interest in user behaviour. To evaluate various design aspects and gauge their effect on user engagement and conversions, utilize A/B testing functionalities.

4. SEMrush:

Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct keyword research to identify relevant search terms and phrases related to the website’s content and industry. Analyze competitor websites to understand their SEO strategies and identify opportunities for improvement. Monitor website rankings, backlinks, and organic traffic to track the effectiveness of SEO efforts.

5. Similarweb:
Use case
scenario: Research, Website Traffic, and Demography, Competitor Analysis
Usage: By offering insights into the traffic sources, audience demographics, and engagement metrics of competitors, Similarweb facilitates website redesigns. It influences marketing tactics, SEO optimization, content development, and decision-making processes by pointing out areas for growth and providing guidance. During the research and analysis stage, use Similarweb data to benchmark against competitors and guide design decisions.

6. Moz:
Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct website audits in order to find technical SEO problems like missing meta tags, duplicate content, and broken links. Keep an eye on a website’s indexability and crawlability to make sure search engines can access and comprehend its material. To find and reject backlinks that are spammy or of poor quality, use link analysis tools.

7. Ahrefs:
Use case scenario:
Research, Analysis, SEO Optimization

Usage: Examine the backlink profiles of your rivals to find any gaps in your own backlink portfolio and possible prospects for link-building. Examine the performance of your content to find the most popular pages and subjects that appeal to your target market. Track social media activity and brand mentions to gain insight into your online reputation and presence.

8. Google Search Console:

Use case scenario: Technical Assessment, SEO Optimization
Usage: Monitor website indexing status, crawl errors, and security issues reported by Google. Submit XML sitemaps and individual URLs for indexing. Identify and fix mobile usability issues, structured data errors, and manual actions that may affect search engine visibility.

9. Adobe Analytics:
Use case scenario:
Website Audit, Research, Analysis,
Usage: Track user interactions across multiple channels and touchpoints, including websites, mobile apps, and offline interactions. Segment users based on demographics, behavior, and lifecycle stage to personalize marketing efforts and improve user experience. Utilize advanced analytics features such as path analysis, cohort analysis, and predictive analytics to uncover actionable insights.

10. Google Trends:

Use case scenario: Content Strategy, Keyword Research, User Intent Analysis
Usage: For competitor analysis, user intent analysis, and keyword research, Google Trends is used in website redesigns. It helps in content strategy, seasonal planning, SEO optimization, and strategic decision-making. It directs the production of user-centric content, increasing traffic and engagement, by spotting trends and insights.

About the Author:

Vijendra is currently working as a Sr. UX Designer at Mantra Labs. He is passionate about UXR and Product Design.

Cancel

Knowledge thats worth delivered in your inbox

Smart Machines & Smarter Humans: AI in the Manufacturing Industry

We have all witnessed Industrial Revolutions reshape manufacturing, not just once, but multiple times throughout history. Yet perhaps “revolution” isn’t quite the right word. These were transitions, careful orchestrations of human adaptation, and technological advancement. From hand production to machine tools, from steam power to assembly lines, each transition proved something remarkable: as machines evolved, human capabilities expanded rather than diminished.

Take the First Industrial Revolution, where the shift from manual production to machinery didn’t replace craftsmen, it transformed them into skilled machine operators. The steam engine didn’t eliminate jobs; it created entirely new categories of work. When chemical manufacturing processes emerged, they didn’t displace workers; they birthed manufacturing job roles. With each advancement, the workforce didn’t shrink—it evolved, adapted, and ultimately thrived.

Today, we’re witnessing another manufacturing transformation on factory floors worldwide. But unlike the mechanical transformations of the past, this one is digital, driven by artificial intelligence(AI) working alongside human expertise. Just as our predecessors didn’t simply survive the mechanical revolution but mastered it, today’s workforce isn’t being replaced by AI in manufacturing,  they’re becoming AI conductors, orchestrating a symphony of smart machines, industrial IoT (IIoT), and intelligent automation that amplify human productivity in ways the steam engine’s inventors could never have imagined.

Let’s explore how this new breed of human-AI collaboration is reshaping manufacturing, making work not just smarter, but fundamentally more human. 

Tools and Techniques Enhancing Workforce Productivity

1. Augmented Reality: Bringing Instructions to Life

AI-powered augmented reality (AR) is revolutionizing assembly lines, equipment, and maintenance on factory floors. Imagine a technician troubleshooting complex machinery while wearing AR glasses that overlay real-time instructions. Microsoft HoloLens merges physical environments with AI-driven digital overlays, providing immersive step-by-step guidance. Meanwhile, PTC Vuforia’s AR solutions offer comprehensive real-time guidance and expert support by visualizing machine components and manufacturing processes. Ford’s AI-driven AR applications of HoloLens have cut design errors and improved assembly efficiency, making smart manufacturing more precise and faster.

2. Vision-Based Quality Control: Flawless Production Lines

Identifying minute defects on fast-moving production lines is nearly impossible for the human eye, but AI-driven computer vision systems are revolutionizing quality control in manufacturing. Landing AI customizes AI defect detection models to identify irregularities unique to a factory’s production environment, while Cognex’s high-speed image recognition solutions achieve up to 99.9% defect detection accuracy. With these AI-powered quality control tools, manufacturers have reduced inspection time by 70%, improving the overall product quality without halting production lines.

3. Digital Twins: Simulating the Factory in Real Time

Digital twins—virtual replicas of physical assets are transforming real-time monitoring and operational efficiency. Siemens MindSphere provides a cloud-based AI platform that connects factory equipment for real-time data analytics and actionable insights. GE Digital’s Predix enables predictive maintenance by simulating different scenarios to identify potential failures before they happen. By leveraging AI-driven digital twins, industries have reported a 20% reduction in downtime, with the global digital twin market projected to grow at a CAGR of 61.3% by 2028

4. Human-Machine Interfaces: Intuitive Control Panels

Traditional control panels are being replaced by intuitive AI-powered human-machine interfaces (HMIs) which simplify machine operations and predictive maintenance. Rockwell Automation’s FactoryTalk uses AI analytics to provide real-time performance analytics, allowing operators to anticipate machine malfunctions and optimize operations. Schneider Electric’s EcoStruxure incorporates predictive analytics to simplify maintenance schedules and improve decision-making.

5. Generative AI: Crafting Smarter Factory Layouts

Generative AI is transforming factory layout planning by turning it into a data-driven process. Autodesk Fusion 360 Generative Design evaluates thousands of layout configurations to determine the best possible arrangement based on production constraints. This allows manufacturers to visualize and select the most efficient setup, which has led to a 40% improvement in space utilization and a 25% reduction in material waste. By simulating layouts, manufacturers can boost productivity, efficiency and worker safety.

6. Wearable AI Devices: Hands-Free Assistance

Wearable AI devices are becoming essential tools for enhancing worker safety and efficiency on the factory floor. DAQRI smart helmets provide workers with real-time information and alerts, while RealWear HMT-1 offers voice-controlled access to data and maintenance instructions. These AI-integrated wearable devices are transforming the way workers interact with machinery, boosting productivity by 20% and reducing machine downtime by 25%.

7. Conversational AI: Simplifying Operations with Voice Commands

Conversational AI is simplifying factory operations with natural language processing (NLP), allowing workers to request updates, check machine status, and adjust schedules using voice commands. IBM Watson Assistant and AWS AI services make these interactions seamless by providing real-time insights. Factories have seen a reduction in response time for operational queries thanks to these tools, with IBM Watson helping streamline machine monitoring and decision-making processes.

Conclusion: The Future of Manufacturing Is Here

Every industrial revolution has sparked the same fear, machines will take over. But history tells a different story. With every technological leap, humans haven’t been replaced; they’ve adapted, evolved, and found new ways to work smarter. AI is no different. It’s not here to take over; it’s here to assist, making factories faster, safer, and more productive than ever.

From AR-powered guidance to AI-driven quality control, the factory floor is no longer just about machinery, it’s about collaboration between human expertise and intelligent systems. And at Mantra Labs, we’re diving deep into this transformation, helping businesses unlock the true potential of AI in manufacturing.

Want to see how AI-powered Augmented Reality is revolutionizing the manufacturing industry? Stay tuned for our next blog, where we’ll explore how AI in AR is reshaping assembly, troubleshooting, and worker training—one digital overlay at a time.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot