Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

10 Analytics Tools to Guide Data-Driven Design

Analytics are essential for informing website redesigns since they offer insightful data on user behavior, website performance, and areas that may be improved. Here is a list of frequently used analytics tools to guide data-driven design that can be applied at different stages of the website redesign process. 

Analytics Tools to Guide Data-Driven Design

1. Google Analytics:

Use case scenario: Website Audit, Research, Analysis, and Technical Assessment
Usage: Find popular sites, entry/exit points, and metrics related to user engagement by analyzing traffic sources, user demographics, and behavior flow. Recognize regions of friction or pain points by understanding user journeys. Evaluate the performance of your website, taking note of conversion rates, bounce rates, and page load times.

2. Hotjar:

Use case scenario: Research, Analysis, Heat Maps, User Experience Evaluation
Usage: Use session recordings, user surveys, and heatmaps to learn more about how people interact with the website. Determine the high and low engagement regions and any usability problems, including unclear navigation or form abandonment. Utilizing behavior analysis and feedback, ascertain the intentions and preferences of users.

3. Crazy Egg:
Use case scenario: Website Audit, Research, Analysis
Usage: Like Hotjar, with Crazy Egg, you can create heatmaps, scrollmaps, and clickmaps to show how users interact with the various website elements. Determine trends, patterns, and areas of interest in user behaviour. To evaluate various design aspects and gauge their effect on user engagement and conversions, utilize A/B testing functionalities.

4. SEMrush:

Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct keyword research to identify relevant search terms and phrases related to the website’s content and industry. Analyze competitor websites to understand their SEO strategies and identify opportunities for improvement. Monitor website rankings, backlinks, and organic traffic to track the effectiveness of SEO efforts.

5. Similarweb:
Use case
scenario: Research, Website Traffic, and Demography, Competitor Analysis
Usage: By offering insights into the traffic sources, audience demographics, and engagement metrics of competitors, Similarweb facilitates website redesigns. It influences marketing tactics, SEO optimization, content development, and decision-making processes by pointing out areas for growth and providing guidance. During the research and analysis stage, use Similarweb data to benchmark against competitors and guide design decisions.

6. Moz:
Use case scenario: Research, Analysis, SEO Optimization
Usage: Conduct website audits in order to find technical SEO problems like missing meta tags, duplicate content, and broken links. Keep an eye on a website’s indexability and crawlability to make sure search engines can access and comprehend its material. To find and reject backlinks that are spammy or of poor quality, use link analysis tools.

7. Ahrefs:
Use case scenario:
Research, Analysis, SEO Optimization

Usage: Examine the backlink profiles of your rivals to find any gaps in your own backlink portfolio and possible prospects for link-building. Examine the performance of your content to find the most popular pages and subjects that appeal to your target market. Track social media activity and brand mentions to gain insight into your online reputation and presence.

8. Google Search Console:

Use case scenario: Technical Assessment, SEO Optimization
Usage: Monitor website indexing status, crawl errors, and security issues reported by Google. Submit XML sitemaps and individual URLs for indexing. Identify and fix mobile usability issues, structured data errors, and manual actions that may affect search engine visibility.

9. Adobe Analytics:
Use case scenario:
Website Audit, Research, Analysis,
Usage: Track user interactions across multiple channels and touchpoints, including websites, mobile apps, and offline interactions. Segment users based on demographics, behavior, and lifecycle stage to personalize marketing efforts and improve user experience. Utilize advanced analytics features such as path analysis, cohort analysis, and predictive analytics to uncover actionable insights.

10. Google Trends:

Use case scenario: Content Strategy, Keyword Research, User Intent Analysis
Usage: For competitor analysis, user intent analysis, and keyword research, Google Trends is used in website redesigns. It helps in content strategy, seasonal planning, SEO optimization, and strategic decision-making. It directs the production of user-centric content, increasing traffic and engagement, by spotting trends and insights.

About the Author:

Vijendra is currently working as a Sr. UX Designer at Mantra Labs. He is passionate about UXR and Product Design.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot