Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(151)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

AI and The Gen Z Experience

4 minutes read

IRDAI InsurTech Event titled- ‘InsurTech -Catalyst that inspires’ concluded on May 30th in Bengaluru. The event aimed to emphasize on InsurTech ecosystem and its benefit for insurers and saw participation from leading companies like Policybazaar, Shri Ram General Insurance, Reliance General Insurance, and Mantra Labs to name a few. IRDAI chairperson, Mr. Debasish Panda highlighted on the insurance and Insurtech partnerships and the significant role that InsurTechs can play in assisting Indian insurance sector to grow. Parag Sharma, CEO Mantra Labs, was invited as a guest speaker at the event to talk about AI and The Gen Z Experience. 

Parag Sharma, CEO Mantra Labs, at IRDAI InsurTech event.

Here are the key takeaways:

  1. Insurtech 3.0 is all about ‘Experience Economy’. With evolving customer expectations, the real challenge for the insurance industry is getting a product faster. Digital customers today want to buy an experience rather than just a product or a service. Partnering with Insurtechs would give insurers much-needed tech capabilities for product innovation. 
  1. Gen Z places importance on customer experience in various decision-making areas and their willingness to pay a premium for a better experience. In fact, CX is the deciding factor in the buying decision for Gen Z. 
PwC report on Future of Customer Experience Survey
  1. Leveraging technologies such as AI, computer vision, predictive analytics, NLP, OCR across the insurance life cycle to create a superior Gen Z experience.
How to create Value across customer lifecycle through AI & Analytics

Stage 1: Consider and Evaluate 

Data plays a key role in risk evaluation, decision-making process, and improving customer experience. Predictive behavioral analytics helps in identifying consumer patterns and the intent of those behaviors. Insurers need to forecast customer expectations based on historical pattern to improve satisfaction scores and boost revenue per customer.

The ‘Digital Behavioral Intelligence Tool’ by Formotiv helps insurers decipher user motivation and intent scores. They collect roughly 5,000-50,000 behavioral data points from 140+ different features on each individual application and provide personalized product recommendations

Stage 2: Buy and Experience

Speed is what the new customer segment wants. Insurers will need to leverage advanced AI and workflow management to improve onboarding experience for the customers. 

Leveraging advanced AI and workflow management to improve onboarding experience for the ‘want-it-now’ customers.

Stage 3: Improving underwriting through AI-Based Dynamic and Smart Decision making in real-time.

Artivatic has introduced a next-gen smart underwriting cloud–AUSIS which helps to connect, and integrate existing or third-party applications and APIs for end-to-end process.

Arivatic Insurtech & Healthtech Platform

Source: Artivatic Insurtech & Healthtech platform

Stage 4: Payment & Claims Management

Fraud Detection with AI and ML models. 

Anadolu Sigorta recently tested a predictive fraud detection system. This detection engine uses automated business rules, self-learning models, predictive analytics, text mining, image screening, device identification, and network analysis that deliver immediate, actionable insights. A.S. attributed over $5.7 million in savings from the AI system.

Claims processing through Computer Vision technology.

Tokio Marine uses an AI-based CV technology to expedite the motor claims process in Japan. AI image recognition allows insurers to evaluate the damage to a vehicle.

The app also shares repair method recommendations and guides the claim process to ensure each claim is processed and settled as quickly as possible.

  1. Every insurance provider must become a part of the insurance ecosystem.

We are in a world of growing connected devices. McKinsey report suggests there will be about a trillion devices by 2025 that will connect and share data with interoperable standards. 

Ecosystems that will enable this data sharing are already shaping up. 

One such upcoming ecosystem is NDHM, now called ABHA. Right now, the focus of this ecosystem is on seamless data exchange between health facilities, and it is just a matter of time when this will be extended to insurance as well.

Another ecosystem that is fast around the corner is that of connected devices (medical/non-medicals/cars, fitness trackers, smart home gadgets, etc.). Data collected from these devices not only will enable insurers to create innovative products but also help in processing claims without any friction. 

Creating a frictionless Gen Z experience will require insurers to be part of these or at least hook into these ecosystems. Technology will act as an enabler in doing so. 

Summing Up

Building a great Gen Z experience on the foundations of data will need long-term conviction, patience and continuous analysis of user behavior.

Moral of the story is: Smell the cheese often so you know when it is getting old.

We should not be expecting things to remain as they were in the past. A keen eye for the data will help us be nimble and be a step ahead in meeting customer expectations.

If you’re interested in learning about next-gen technologies and how your business can make use of AI, we would love to speak with you. You can reach out to us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

What’s Next in Cloud Optimization? Can We Optimize Costs Without Sacrificing Performance?

Not too long ago, storing data meant dedicating an entire room to massive CPUs. Then came the era of personal computers, followed by external hard drives and USB sticks. Now, storage has become practically invisible, floating somewhere between data centers and, well, the clouds—probably the ones in the sky. Cloud computing continues to evolve, As cloud computing evolves, optimizing costs without sacrificing performance has become a real concern.  How can organizations truly future-proof their cloud strategy while reducing costs? Let’s explore new-age cloud optimization strategies in 2025 designed for maximum performance and cost efficiency.

Smarter Cloud Strategies: Cutting Costs While Boosting Performance

1. AI-Driven Cost Prediction and Auto-Optimization

When AI is doing everything else, why not let it take charge of cloud cost optimization too? Predictive analytics powered by AI can analyze usage trends and automatically scale resources before traffic spikes, preventing unnecessary over-provisioning. Cloud optimization tools like AWS Compute Optimizer and Google’s Active Assist are early versions of this trend.

  • How it Works: AI tools analyze real-time workload data and predict future cloud resource needs, automating provisioning and scaling decisions to minimize waste while maintaining performance.
  • Use case: Netflix optimizes cloud costs by using AI-driven auto-scaling to dynamically allocate resources based on streaming demand, reducing unnecessary expenditure while ensuring a smooth user experience.

2. Serverless and Function-as-a-Service (FaaS) Evolution

That seamless experience where everything just works the moment you need it—serverless computing is making cloud management feel exactly like that. Serverless computing eliminates idle resources, cutting down costs while boosting cloud performance. You only pay for the execution time of functions, making it a cost-effective cloud optimization technique.

  • How it works: Serverless computing platforms like AWS Lambda, Google Cloud Functions, and Azure Functions execute event-driven workloads, ensuring efficient cloud resource utilization while eliminating the need for constant infrastructure management.
  • Use case: Coca-Cola leveraged AWS Lambda for its vending machines, reducing backend infrastructure costs and improving operational efficiency by scaling automatically with demand. 

3. Decentralized Cloud Computing: Edge Computing for Cost Reduction

Why send all your data to the cloud when it can be processed right where it’s generated? Edge computing reduces data transfer costs and latency by handling workloads closer to the source. By distributing computing power across multiple edge nodes, companies can avoid expensive, centralized cloud processing and minimize data egress fees.

  • How it works: Companies deploy micro data centers and AI-powered edge devices to analyze data closer to the source, reducing dependency on cloud bandwidth and lowering operational costs.
  • Use case: Retail giant Walmart leverages edge computing to process in-store data locally, reducing latency in inventory management and enhancing customer experience while cutting cloud expenses.

4. Cloud Optimization with FinOps Culture

FinOps (Cloud Financial Operations) is a cloud cost management practice that enables organizations to optimize cloud costs while maintaining operational efficiency. By fostering collaboration between finance, operations, and engineering teams, FinOps ensures cloud investments align with business goals, improving ROI and reducing unnecessary expenses.

  • How it works: Companies implement FinOps platforms like Apptio Cloudability and CloudHealth to gain real-time insights, automate cost optimization, and enforce financial accountability across cloud operations.
  • Use case: Early adopters of FinOps were Adobe, which leveraged it to analyze cloud spending patterns and dynamically allocate resources, leading to significant cost savings while maintaining application performance. 

5. Storage Tiering with Intelligent Data Lifecycle Management

Not all data needs a VIP seat in high-performance storage. Intelligent data lifecycle management ensures frequently accessed data stays hot, while infrequently used data moves to cost-effective storage. Cloud-adjacent storage, where data is stored closer to compute resources but outside the primary cloud, is gaining traction as a cost-efficient alternative. By reducing egress fees and optimizing storage tiers, businesses can significantly cut expenses while maintaining performance.

  • How it’s being done: Companies use intelligent storage optimization tools like AWS S3 Intelligent-Tiering, Google Cloud Storage’s Autoclass, and cloud-adjacent storage solutions from providers like Equinix and Wasabi to reduce storage and data transfer costs.
  • Use case: Dropbox optimizes cloud storage costs by using multi-tiered storage systems, moving less-accessed files to cost-efficient storage while keeping frequently accessed data on high-speed servers. 

6. Quantum Cloud Computing: The Future-Proof Cost Gamechanger

Quantum computing sounds like sci-fi, but cloud providers like AWS Braket and Google Quantum AI are already offering early-stage access. While still evolving, quantum cloud computing has the potential to process vast datasets at lightning speed, dramatically cutting costs for complex computations. By solving problems that traditional computers take days or weeks to process, quantum computing reduces the need for excessive computing resources, slashing operational costs.

  • How it works: Cloud providers integrate quantum computing services with existing cloud infrastructure, allowing businesses to test and run quantum algorithms for complex problem-solving without massive upfront investments.
  • Use case: Daimler AG leverages quantum computing to optimize battery materials research, reducing R&D costs and accelerating EV development.

7. Sustainable Cloud Optimization: Green Computing Meets Cost Efficiency

Running workloads when renewable energy is at its peak isn’t just good for the planet—it’s good for your budget too. Sustainable cloud computing aligns operations with renewable energy cycles, reducing reliance on non-renewable sources and lowering overall operational costs.

  • How it works: Companies use carbon-aware cloud scheduling tools like Microsoft’s Emissions Impact Dashboard to track energy consumption and optimize workload placement based on sustainability goals.
  • Use case: Google Cloud shifts workloads to data centers powered by renewable energy during peak production hours, reducing carbon footprint and lowering energy expenses. 

The Next Frontier: Where Cloud Optimization is Headed

Cloud optimization in 2025 isn’t just about playing by the old rules. It’s about reimagining the game entirely. With AI-driven automation, serverless computing, edge computing, FinOps, quantum advancements, and sustainable cloud practices, businesses can achieve cost savings and high cloud performance like never before.

Organizations that embrace these innovations will not only optimize their cloud spend but also gain a competitive edge through improved efficiency, agility, and sustainability. The future of cloud computing in 2025 isn’t just about cost-cutting—it’s about making smarter, more strategic cloud investments.

At Mantra Labs, we specialize in AI-driven cloud solutions, helping businesses optimize cloud costs, improve performance, and stay ahead in an ever-evolving digital landscape. Let’s build a smarter, more cost-efficient cloud strategy together. Get in touch with us today!

Are you ready to make your cloud strategy smarter, cost-efficient, and future-ready with AI-driven, serverless, and sustainable innovations?

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot