Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

State of Metaverse-based ecosystems in Fin-Tech

3 minutes read

Paris Hilton has a Roblox virtual island where people can buy digital versions of her outfits. Accenture will onboard 1,50,000 new hires using Metaverse. Metaverse has been the talk of the town since Facebook changed its name to Meta. Let’s look at how metaverse-based ecosystems in Fin-Tech is transforming customer experience (CX).

Global metaverse market size will touch $678.8 billion by 2030, witnessing a CAGR of 39.4%, reveals research and markets. CB Insights’ research predicts that metaverse could represent a $1T market by 2030. Industries are working to create a reality in which the physical and digital worlds blend seamlessly. 

Where Fin-Techs are heading to in the Metaverse-based ecosystem?

European bank ABN Amro was the first to open a virtual branch in Second Life created in 2003. Earliest ventures into the metaverse were primarily motivated by branding and visibility which is now shifting to the mainstream. Metaverse application has moved beyond gamification to virtual training and life-like experiences. We’re moving towards a future where digital lives are becoming more important.

Razorfish and Vice Media Group’s new study shows that Gen Z spends more time in metaverse space than older demographics. They develop more meaningful connections to their online identities and want realistic experiences in their virtual life. For organizations, it becomes highly imperative to understand how these customers connect, interact and interface in this virtual space.

According to JP Morgan’s research, the metaverse offers opportunities to:

  • Transact – every year, $54bn is spent on virtual goods, almost double the amount spent buying music. 
  • Socialize – approximately $60bn messages are sent daily on Roblox.
  • Create – GDP for Second Life was around $650m in 2021 with nearly $80m dollars paid to creators. 
  • Own – NFT currently has a market cap of $41bn.
  • Experience – 200 strategic partnerships till date with The Sandbox, including Warner Music Group to create a music-themed virtual world.

Metaverse has limitless opportunities to offer. Let’s look at some of the top use cases of metaverse in the financial industry.

  1. Recently Lynx announced two use cases: a cryptocurrency-based game that allows players to create and earn and sell digital items with financial value, and an “enhanced remittance experience”, a digital meeting space that allows those sending money to loved ones to visit and communicate with them in a “streamlined, entertaining, economical, and secure” manner.
  2. Navi Technologies has unveiled a metaverse-based “Fund of Funds” scheme. The investors will finance Exchange-Traded Funds (ETFs), which will be used to fund metaverse-based companies. The fintech aims to invest $1 billion in total across multiple assets, with a maximum investment of $300 million in a single ETF. The company will issue a NAV unit at a face value of INR 10. For example, a customer investing INR 500 in the plan, will receive 50 units across the ETFs that Navi will be investing in.
Navi Technologies
  1.  JP Morgan is the first bank to open a lounge- Onyx in Decentraland. In the Onyx Lounge, situated in Metaiuku–a virtual replica of Tokyo’s Harajuku shopping area, a tiger roams the first floor, overlooked by a portrait of the bank’s boss Jamie Dimon. And on the 2nd floor, a person’s avatar can watch experts talk about crypto market.
JP Morgan's Onyx
  1. Korean Bank Kookmin introduced a ‘virtual financial town’ that includes three spaces: (1) The financial and business center consists of branches, public relations and recruitment booths, auditoriums, and social spaces. 

(2) The telecommuting center enhances communication and collaboration between telecommuters and office employees. 

(3) A playground for interacting.

Kookmin Banks' Virtual Financial Town

Source: donga.com/news

  1. Bank of America is the first to launch VR training in over 4,300 financial centers. They use VR headsets to practice skills like strengthen and deepen customer relationships, handle difficult conversations, and listen and respond with empathy. “Managers can also detect skill gaps and provide tailored follow-up training and customized counseling to colleagues to further boost performance using real-time statistics,” the bank says.

The Road Ahead

Decentraland operates via its own cryptocurrency called MANA and Sandbox has Sand. Somnium Space has its own asset marketplace where users can choose to ‘live forever. 

The financial sector is facing intense competition in the virtual space. Digital assets and digital currency are becoming increasingly prevalent in the metaverse. Leveraging the meta-world will help financial organizations create a continuum of experience for the users and provide more personalized and engaging interactions in the time ahead.

Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot