Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

6 AI Applications that are transforming Insurance Now

With an insurance boom in the Asia-Pacific (APAC) region, Insurers are competing for developing superior technological capabilities in order to meet their customers’ demands better. Therefore, to stand out from the competition, companies are regularly adapting new tactics to ace the game, and AI is one of them.

According to a study, more than 80 per cent of insurance CEOs mentioned that AI was already a part of their business model or would be within the next three years.

AI has honed the way increasing data, computing capabilities, and evolving consumer expectations are handled and executed by making processes more automated and efficient. The role of AI has evolved over time to fulfil complex business requirements. In this blog, we will cover six significant areas in which AI is transforming insurance companies, but before proceeding, let’s take a look at how AI trends within Insurance.

Trends of AI in Insurance (50-100 Words)

Google Trends, reveals a constant uptick in AI-powered insurance applications acquired by the insurers between 2015-2020.

Google Trends, reveals a constant uptick in AI-powered insurance applications acquired by the insurers between 2015-2020. 

However, the impact of COVID-19 in 2020 has slowed this pace down a little. This is because insurer spending on AI systems had taken a back seat to mitigate other more pressing challenges that required allocation of budgets to those priorities. But in the Post- COVID world, it is expected that AI and insurance have a long way to go together.

How AI is Transforming the Insurance Industry 

Artificial Intelligence has driven positive impacts on many different business models, and insurance is no exception. Also, it works much better with AI because insurers have a treasure-trove of data, which is the primary fuel to drive successful results with AI.

Among all changes AI brought, the six major ones are mentioned below:

  1. Claims acceleration

AI is applied to automate or accelerate the process of claim. Claims processing includes a lot of tasks like reviewing, investigating, making adjustments and remittance or denying. If solely done by humans, the following issues might occur:

  • Inconsistent processing and more probability of errors
  • Varying data formats and time-taking management 
  • Staff training and process updating sessions

These processes can be accelerated with new Artificial Intelligence capabilities, leading to claims being paid in hours or days rather than weeks. However, likely, this kind of automation for claims acceleration will only work in low impact claims. For complicated requests, AI, along with human interaction, will be able to achieve the goal.

  1. Price sophistication using GLM

Insurers widely use AI techniques like GLMs (Generalised Linear Models) for price optimisation in tar and life assurance fields. Pricing optimisation allows companies to understand their customers better and enable them to balance capacity with demand and drive better conversion rates. 

Moreover, adding non-traditional data like unstructured data and written reports can also augment price optimisation and make better decisions.

  1. Using IoT 

IoT (Internet of Things) is one of the most significant AI opportunities within the insurance industry. These devices are getting a lot of traction from the users and are beneficial for insurance companies to assess customer risk profiles. Several IoT smart home devices are being used to alert customers when there are issues within their home or commercial property, for example, leak/moisture sensors. Using them, along with AI, helps insurance companies to offer better services.

For example, predictive analytics models could be built using the datasets of customers using leak detection sensors to predict which customers might be vulnerable to a leak. This prediction will help companies to send out repairers to replace faulty pipes before they burst to lead to claims.

  1. Personalised Services and Recommendations

Personalised services help customers to match their needs and lifestyle. Artificial Intelligence creates personalised services using customers’ product ratings, demographic data, preferences, interaction, behaviour, attitude, lifestyle details, interests, and hobbies. This helps companies in selling the right product to customers and target the correct audience. An Accenture study suggests that 80% of insurance customers are looking for more personalised experiences, and AI helps companies do so. 

Moreover, with the recommendations based on the customer’s behaviour or past purchases, AI shapes the way things are recommended to the customers. For example, a customer looking for health insurance would be displayed with offers on health insurance. Also, this helps in sending meaningful marketing messages.

  1. Eliminating underwriting risks

Humans solely did the process of underwriting. Therefore, the probability of getting errors was quite more and also it was a time-consuming process. But AI technologies have worked their way into this area of insurance and made the process quick and efficient without manual efforts.

  1. Affective computing (Emotional AI)

Also known as emotion AI, Affective computing is used to understand customers better and make decisions according to their mental/emotional states. It identifies, processes, and simulates human feelings and emotions and behaves and replies based on the same. This technology is shaping the Insurance industry in the following ways:

  • Fraud detection: Voice analytics is used to understand if a customer is lying while submitting a claim. AI makes this analysis based on various previous data sets and customer behaviours.
  • Intelligent call management: Customers running short on time or are angry are directed to more experienced call agents to ensure their satisfaction. 

New Adaptations

This ever-changing digital era is continuously adopting new technology. Therefore, another critical element to understanding the industry transformation is comparatively learning about the existing techniques and the new ones. 

The chart mentioned below contains some generic high-level use cases that many Insurance organisations are adopting. The abbreviations used are:

  • ML: Machine Learning
  • NLP: Natural Language Processing
  • SVM: Support Vector Machines
The chart contains some generic high-level use cases that many Insurance organisations are adopting.

Conclusion

So far, the blog must have helped you know how AI is transforming the Insurance industry in various ways. You can adapt to these modifications in your business model to stay ahead in the competition. However, it is worth mentioning that AI to an Insurance company could be beyond standard use cases and be viewed as a way to augment the role of data assets. There’s a lot to gain from the AI-first world for insurers, and also a lot to lose if AI is not embraced and well understood.

Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot