Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(21)

Clean Tech(9)

Customer Journey(17)

Design(45)

Solar Industry(8)

User Experience(68)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Manufacturing(3)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(33)

Technology Modernization(9)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(58)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(153)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(8)

Computer Vision(8)

Data Science(23)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(48)

Natural Language Processing(14)

expand Menu Filters

Pushing the Envelope on ICR Accuracy in Hand-written Forms

5 minutes, 6 seconds read

The need for and consequently the number of solutions for reading hand-written forms in an automated manner has been on a rise for as long as one could remember. Almost all businesses to varying degrees utilize paper-based forms that are filled by customers by hand. Most if not all of these businesses convert this handwritten information into the digital format. Depending on the technological sophistication or the size of the business this digitization might be done manually by one or more data entry specialists or through an automated solution. 

It’s easy to see how the manual route may not be an ideal solution for medium or large-sized business. Some of the apparent drawbacks of manual document processing are:

  1. The cost of having data entry specialists quickly add up as more documents need to be digitized necessitating adding more resources.
  2. Manual data entry is a slow process.
  3. Manual data entry is error-prone and requires a quality inspection which is costly and not fail-proof.

Many businesses have realized this and have transitioned to some form of a partially or fully automated solution to this problem. However, it’s not all rosy for these businesses either. The problems these businesses face is primarily related to the accuracy of the current solutions in the market. 

Shortcomings of Existing Hand-written Document Processing Solutions

The industry average for ICR (Intelligent Character Recognition) accuracy at the character level is about 70% and it will drop significantly if measured at word level which is what matters at the end. Such automation may allow for reducing the number of data entry personnel but with such a low level of accuracy, there will be a need for increased quality check resources, which are often more expensive than data entry resources hence diluting the cost-benefit of automation. Moreover, since the quality check is a slower process than data entry, this kind of automation doesn’t even address the speed problem.

Some of the reasons that result in a low level of accuracy among existing document processing solutions are:

  • Poor form design
  • User input not in line with the format
  • Noisy images
  • Misaligned documents
  • Low-quality scanning of documents
  • Spelling mistakes by the user
  • Overwriting/corrections by user

While we may not have control over some of the above factors such as form design and user input, we can definitely improvise the data extraction models to account for the other factors such as image noise, misalignments, spelling mistakes etc.

Our ICR Solution

The Document Parser solution in FlowMagic provides an intuitive user interface where data can be extracted from any standard form in three easy steps:

Step 1:   The user annotates the form (this is a one-time exercise for each new form) using an easy and intuitive UI. During annotation, each input field can optionally be labelled as mandatory. The user can specify the datatype for each field as alphabets, numeric or checkbox and also set the context for the field e.g. Name, PAN, City, Car Make, Date etc. Once done, the saved template can be used repeatedly for reading forms of the same type as long as there are no changes in the form design. In case of a change, the saved template can be easily modified. 

Step 2:   The user uploads one or more forms and chooses the corresponding template (from previous annotations). The system automatically extracts data from the forms.

Step 3:  The system exports the output in CSV, XML or JSON as desired by the user. If any field was marked as mandatory during annotation, the system also outputs a list of all mandatory fields that are blank.

Salient features of ICR Document Parser

  1. The standard form being annotated can be any number of pages. The input form need not have the same number of pages. If there is a mismatch between the pages in the input form and the template, the system does a matching and runs the data extraction on matching pages only. This also means that the input form need not be sorted correctly.
  2. The system can read handwritten as well as printed forms.
  3. The system corrects for minor misalignments during scanning of documents or documents scanned in the wrong orientation.
  4. The system has inbuilt dictionaries for various contexts such as Name, Cities, States, Countries, PAN, Profession, Marital Status, Relationship, Amount, Car Make, Date, Gender.
  5. The various data types supported by the system are alphabets, numeric, alphanumeric, checkboxes and special characters.
  6. The system corrects user errors or scanning issues by performing data type and dictionary checks (see examples below).
  7. The system checks for mandatory fields to make sure the form is completely filled.

Examples of Data Read/Corrections Made by an ICR

Benefits of ICR

Flexibility – you can annotate a wide variety of forms with complex inputs and data formats using the multiple data types and contexts built into the system.

Speed – Both annotation and data extraction are very user-friendly and fast. The system can extract data from a five-page form in under 30 seconds.

Scalability – The system is highly extensible and once set up for one type of form can easily be scaled for multiple forms or to process documents in bulk of the same format.

Accuracy – The character level accuracy of our model is over 90%. Word level accuracy depends on the form design and quality but in general, varies between 75% and 85%.

Workflow

ICR (Intelligent Character Recognizer) workflow

No matter what solution you use, you can always benefit from these best practices for form design to improve the accuracy of your ICR:

  1. Have all instructions in bold at the top of the form.
  2. Instruct the user to write clearly in block letters as the form will be processed by a machine.
  3. Provide examples of how to enter data wherever there is a scope for confusion.
  4. Instead of providing a free form space for data entry, it provides a clearly marked space with a specific location to enter each character.
  5. The overall space should be large enough to contain the requisite data to avoid user writing outside of this space.
  6. Have enough separation between the space for two fields to avoid overlap.

To learn more about how FlowMagic can improve the accuracy and speed of your document digitization/Intelligent Character Recognition (ICR) or discuss your broader AI goals, please get in touch with us at hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

AI Code Assistants: Revolution Unveiled

AI code assistants are revolutionizing software development, with Gartner predicting that 75% of enterprise software engineers will use these tools by 2028, up from less than 10% in early 2023. This rapid adoption reflects the potential of AI to enhance coding efficiency and productivity, but also raises important questions about the maturity, benefits, and challenges of these emerging technologies.

Code Assistance Evolution

The evolution of code assistance has been rapid and transformative, progressing from simple autocomplete features to sophisticated AI-powered tools. GitHub Copilot, launched in 2021, marked a significant milestone by leveraging OpenAI’s Codex to generate entire code snippets 1. Amazon Q, introduced in 2023, further advanced the field with its deep integration into AWS services and impressive code acceptance rates of up to 50%. GPT (Generative Pre-trained Transformer) models have been instrumental in this evolution, with GPT-3 and its successors enabling more context-aware and nuanced code suggestions.

Image Source

  • Adoption rates: By 2023, over 40% of developers reported using AI code assistants.
  • Productivity gains: Tools like Amazon Q have demonstrated up to 80% acceleration in coding tasks.
  • Language support: Modern AI assistants support dozens of programming languages, with GitHub Copilot covering over 20 languages and frameworks.
  • Error reduction: AI-powered code assistants have shown potential to reduce bugs by up to 30% in some studies.

These advancements have not only increased coding efficiency but also democratized software development, making it more accessible to novice programmers and non-professionals alike.

Current Adoption and Maturity: Metrics Defining the Landscape

The landscape of AI code assistants is rapidly evolving, with adoption rates and performance metrics showcasing their growing maturity. Here’s a tabular comparison of some popular AI coding tools, including Amazon Q:

Amazon Q stands out with its specialized capabilities for software developers and deep integration with AWS services. It offers a range of features designed to streamline development processes:

  • Highest reported code acceptance rates: Up to 50% for multi-line code suggestions
  • Built-in security: Secure and private by design, with robust data security measures
  • Extensive connectivity: Over 50 built-in, managed, and secure data connectors
  • Task automation: Amazon Q Apps allow users to create generative AI-powered apps for streamlining tasks

The tool’s impact is evident in its adoption and performance metrics. For instance, Amazon Q has helped save over 450,000 hours from manual technical investigations. Its integration with CloudWatch provides valuable insights into developer usage patterns and areas for improvement.

As these AI assistants continue to mature, they are increasingly becoming integral to modern software development workflows. However, it’s important to note that while these tools offer significant benefits, they should be used judiciously, with developers maintaining a critical eye on the generated code and understanding its implications for overall project architecture and security.

AI-Powered Collaborative Coding: Enhancing Team Productivity

AI code assistants are revolutionizing collaborative coding practices, offering real-time suggestions, conflict resolution, and personalized assistance to development teams. These tools integrate seamlessly with popular IDEs and version control systems, facilitating smoother teamwork and code quality improvements.

Key features of AI-enhanced collaborative coding:

  • Real-time code suggestions and auto-completion across team members
  • Automated conflict detection and resolution in merge requests
  • Personalized coding assistance based on individual developer styles
  • AI-driven code reviews and quality checks

Benefits for development teams:

  • Increased productivity: Teams report up to 30-50% faster code completion
  • Improved code consistency: AI ensures adherence to team coding standards
  • Reduced onboarding time: New team members can quickly adapt to project codebases
  • Enhanced knowledge sharing: AI suggestions expose developers to diverse coding patterns

While AI code assistants offer significant advantages, it’s crucial to maintain a balance between AI assistance and human expertise. Teams should establish guidelines for AI tool usage to ensure code quality, security, and maintainability.

Emerging trends in AI-powered collaborative coding:

  • Integration of natural language processing for code explanations and documentation
  • Advanced code refactoring suggestions based on team-wide code patterns
  • AI-assisted pair programming and mob programming sessions
  • Predictive analytics for project timelines and resource allocation

As AI continues to evolve, collaborative coding tools are expected to become more sophisticated, further streamlining team workflows and fostering innovation in software development practices.

Benefits and Risks Analyzed

AI code assistants offer significant benefits but also present notable challenges. Here’s an overview of the advantages driving adoption and the critical downsides:

Core Advantages Driving Adoption:

  1. Enhanced Productivity: AI coding tools can boost developer productivity by 30-50%1. Google AI researchers estimate that these tools could save developers up to 30% of their coding time.
IndustryPotential Annual Value
Banking$200 billion – $340 billion
Retail and CPG$400 billion – $660 billion
  1. Economic Impact: Generative AI, including code assistants, could potentially add $2.6 trillion to $4.4 trillion annually to the global economy across various use cases. In the software engineering sector alone, this technology could deliver substantial value.
  1. Democratization of Software Development: AI assistants enable individuals with less coding experience to build complex applications, potentially broadening the talent pool and fostering innovation.
  2. Instant Coding Support: AI provides real-time suggestions and generates code snippets, aiding developers in their coding journey.

Critical Downsides and Risks:

  1. Cognitive and Skill-Related Concerns:
    • Over-reliance on AI tools may lead to skill atrophy, especially for junior developers.
    • There’s a risk of developers losing the ability to write or deeply understand code independently.
  2. Technical and Ethical Limitations:
    • Quality of Results: AI-generated code may contain hidden issues, leading to bugs or security vulnerabilities.
    • Security Risks: AI tools might introduce insecure libraries or out-of-date dependencies.
    • Ethical Concerns: AI algorithms lack accountability for errors and may reinforce harmful stereotypes or promote misinformation.
  3. Copyright and Licensing Issues:
    • AI tools heavily rely on open-source code, which may lead to unintentional use of copyrighted material or introduction of insecure libraries.
  4. Limited Contextual Understanding:
    • AI-generated code may not always integrate seamlessly with the broader project context, potentially leading to fragmented code.
  5. Bias in Training Data:
    • AI outputs can reflect biases present in their training data, potentially leading to non-inclusive code practices.

While AI code assistants offer significant productivity gains and economic benefits, they also present challenges that need careful consideration. Developers and organizations must balance the advantages with the potential risks, ensuring responsible use of these powerful tools.

Future of Code Automation

The future of AI code assistants is poised for significant growth and evolution, with technological advancements and changing developer attitudes shaping their trajectory towards potential ubiquity or obsolescence.

Technological Advancements on the Horizon:

  1. Enhanced Contextual Understanding: Future AI assistants are expected to gain deeper comprehension of project structures, coding patterns, and business logic. This will enable more accurate and context-aware code suggestions, reducing the need for extensive human review.
  2. Multi-Modal AI: Integration of natural language processing, computer vision, and code analysis will allow AI assistants to understand and generate code based on diverse inputs, including voice commands, sketches, and high-level descriptions.
  3. Autonomous Code Generation: By 2027, we may see AI agents capable of handling entire segments of a project with minimal oversight, potentially scaffolding entire applications from natural language descriptions.
  4. Self-Improving AI: Machine learning models that continuously learn from developer interactions and feedback will lead to increasingly accurate and personalized code suggestions over time.

Adoption Barriers and Enablers:

Barriers:

  1. Data Privacy Concerns: Organizations remain cautious about sharing proprietary code with cloud-based AI services.
  2. Integration Challenges: Seamless integration with existing development workflows and tools is crucial for widespread adoption.
  3. Skill Erosion Fears: Concerns about over-reliance on AI leading to a decline in fundamental coding skills among developers.

Enablers:

  1. Open-Source Models: The development of powerful open-source AI models may address privacy concerns and increase accessibility.
  2. IDE Integration: Deeper integration with popular integrated development environments will streamline adoption.
  3. Demonstrable ROI: Clear evidence of productivity gains and cost savings will drive enterprise adoption.
  1. AI-Driven Architecture Design: AI assistants may evolve to suggest optimal system architectures based on project requirements and best practices.
  2. Automated Code Refactoring: AI tools will increasingly offer intelligent refactoring suggestions to improve code quality and maintainability.
  3. Predictive Bug Detection: Advanced AI models will predict potential bugs and security vulnerabilities before they manifest in production environments.
  4. Cross-Language Translation: AI assistants will facilitate seamless translation between programming languages, enabling easier migration and interoperability.
  5. AI-Human Pair Programming: More sophisticated AI agents may act as virtual pair programming partners, offering real-time guidance and code reviews.
  6. Ethical AI Coding: Future AI assistants will incorporate ethical considerations, suggesting inclusive and bias-free code practices.

As these trends unfold, the role of human developers is likely to shift towards higher-level problem-solving, creative design, and AI oversight. By 2025, it’s projected that over 70% of professional software developers will regularly collaborate with AI agents in their coding workflows1. However, the path to ubiquity will depend on addressing key challenges such as reliability, security, and maintaining a balance between AI assistance and human expertise.

The future outlook for AI code assistants is one of transformative potential, with the technology poised to become an integral part of the software development landscape. As these tools continue to evolve, they will likely reshape team structures, development methodologies, and the very nature of coding itself.

Conclusion: A Tool, Not a Panacea

AI code assistants have irrevocably altered software development, delivering measurable productivity gains but introducing new technical and societal challenges. Current metrics suggest they are transitioning from novel aids to essential utilities—63% of enterprises now mandate their use. However, their ascendancy as the de facto standard hinges on addressing security flaws, mitigating cognitive erosion, and fostering equitable upskilling. For organizations, the optimal path lies in balanced integration: harnessing AI’s speed while preserving human ingenuity. As generative models evolve, developers who master this symbiosis will define the next epoch of software engineering.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot